...
首页> 外文期刊>Acta astronautica >Design and development of correlation techniques to maintain a space surveillance system catalogue
【24h】

Design and development of correlation techniques to maintain a space surveillance system catalogue

机译:维护空间监视系统目录的相关技术的设计和开发

获取原文
获取原文并翻译 | 示例
           

摘要

A growing interest exists in a future, autonomous European Space Surveillance System (ESSS). Currently, most of the knowledge about Earth-orbiting space objects is based on information provided by the USASPACECOM. This paper presents the required initial orbit determination (IOD) and correlation techniques to process optical measurements. Former studies were focused on the handling of radar measurements, which are summarised with the aim of describing a global procedure for processing hybrid measurement types (combination of radar and optic data for catalogue maintenance). The introduction of manoeuvres are presented due to their importance in the space object catalogue maintenance.rnThe detection of uncatalogued objects and the successful correlation of already catalogued objects involve two different tasks for telescopes: survey and tasking. Assumptions for both strategies are developed on the basis of the previous work developed at the University of Berne (see [T. Flohrer, T. Schildknecht, R. Musci, E. Stoveken, Performance estimation for GEO space surveillance, Advances in Space Research 35 (2005). [1]; T. Flohrer, T. Schildknecht, R. Musci, Proposed strategies for optical observations in a future European Space Surveillance Network, presented in the 36th COSPAR Scientific Assembly (2006). [21; R. Musci, T. Schildknecht, M. Ploner, Orbit improvement for GEO objects using follow-up observations, Advances in Space Research 34 (2004). [31; R. Musci, T. Schildknecht, M. Ploner, G. Beutler, Orbit improvement for GTO objects using follow-up observations, Advances in Space Research 35 (2005). [4]; R. Musci, T. Schildknecht, T. Flohrer, G. Beutler, Concept for a catalogue of space debris in GEO, Proceedings of the Fourth European Conference on Space Debris, (ESA SP-587, 2005). [5]]). When a new object appears in the field of view, initial orbit determination must be performed. When only one telescope per site is available, the initial measurements are separated by only a few seconds. Therefore, the initial orbit determination is quite inaccurate due to bad mathematical conditioning of the problem. In order to improve the accuracy of the initial orbit determination, several follow-up observations of the object are required. This implies that the telescope needs to track the detected objects over a long period, and therefore the time available for surveying is reduced. By processing the additional follow-up measurements, separated now by a few hours, the initial orbit determination gives more accurate results and the object can be recovered after an orbital revolution. When several telescopes per site are available, the optical strategies may be modified. The survey tasks can be distributed between the available telescopes. In this way the number of images corresponding to each object increases and to track the detected object over long periods is not always needed. Numerical results will be shown in order to evaluate the accuracy and features of the different telescope strategies. A key point for performing efficiently the cataloguing process is the calculation of the estimated state vector covariance matrix. The covariance matrix analysis allows an adaptive tasking-surveyrntelescope scheduling. Moreover, the implementation of a proper batch orbit determination process by means of a square root information filter (SRIF) requires a realistic initial covariance matrix.rnHybrid measurements are available from objects that can be observed through both radar and optical sensors (e.g. GTO objects). The batch orbit determination and correlation process of hybrid measurements is also based on SRIF using an extended measurement model. Both the initial orbit determination methods using radar and optical measurements have to be sufficiently accurate to initialise SRIF correctly. In order to avoid filter divergence, the estimated covariance must be correctly updated after processing both kinds of measurements. The implemented algorithms are ex
机译:人们对未来的自主式欧洲空间监视系统(ESSS)越来越感兴趣。当前,关于地球轨道空间物体的大多数知识都是基于USASPACECOM提供的信息。本文介绍了处理光学测量所需的初始轨道确定(IOD)和相关技术。以前的研究集中在雷达测量的处理上,这些研究的总结旨在描述处理混合测量类型(雷达和光学数据的组合以进行目录维护)的全局程序。由于它们在空间物体目录维护中的重要性,因此介绍了机动的方法。rn未探测物体的检测和已被分类物体的成功关联涉及望远镜的两个不同任务:勘测和任务分配。两种策略的假设都是在伯尔尼大学以前的工作基础上制定的(请参见[T. Flohrer,T. Schildknecht,R. Musci,E. Stoveken,GEO空间监视的性能估计,空间研究的进展35 (2005)。[1]; T。Flohrer,T。Schildknecht,R。Musci,在未来的欧洲空间监视网络中的光学观测的拟议策略,在第36届COSPAR科学大会上发表(2006年)。[21; R. Musci ,T。Schildknecht,M。Ploner,《使用后续观察改善地球静止轨道物体的轨道》,空间研究进展34(2004)。[31; R。Musci,T。Schildknecht,M。Ploner,G。Beutler,轨道改善利用后续观察对GTO物体进行观测,《空间研究进展》 35(2005)。[4]; R。Musci,T。Schildknecht,T。Flohrer,G。Beutler,《 GEO中空间碎片目录的概念》,第四次欧洲空间碎片会议(ESA SP-587,2005年。[5]])。当新物体出现在视场中时,必须执行初始轨道确定。当每个站点只有一台望远镜可用时,初始测量仅间隔几秒钟。因此,由于问题的不良数学条件,初始轨道确定是非常不准确的。为了提高初始轨道确定的准确性,需要对物体进行几次后续观察。这意味着望远镜需要长时间跟踪被测物体,因此减少了可用于测量的时间。通过处理额外的后续测量(现在相隔几个小时),初始的轨道确定将提供更准确的结果,并且在绕转一周后即可恢复目标。当每个站点有几个望远镜可用时,可以修改光学策略。可以在可用望远镜之间分配调查任务。以此方式,与每个物体相对应的图像数量增加,并且并不总是需要长时间跟踪所检测到的物体。将显示数值结果,以评估不同望远镜策略的准确性和特征。有效执行分类过程的关键是估计状态向量协方差矩阵的计算。协方差矩阵分析允许进行自适应任务-调查望远镜计划。此外,通过平方根信息滤波器(SRIF)实施正确的批轨道确定过程需要一个现实的初始协方差矩阵。rn混合测量可从可以通过雷达和光学传感器观测到的物体(例如GTO物体)获得。混合测量的批次轨道确定和相关过程也基于使用扩展测量模型的SRIF。使用雷达和光学测量的初始轨道确定方法都必须足够准确才能正确初始化SRIF。为了避免滤波器发散,必须在处理两种测量之后正确更新估计的协方差。实现的算法是ex

著录项

  • 来源
    《Acta astronautica》 |2009年第8期|1133-1148|共16页
  • 作者单位

    DEIMOS Space S.L., 28760 Tres Cantos, Madrid, Spain;

    DEIMOS Space S.L., 28760 Tres Cantos, Madrid, Spain;

    DEIMOS Space S.L., 28760 Tres Cantos, Madrid, Spain;

    DEIMOS Space S.L., 28760 Tres Cantos, Madrid, Spain;

    European Space Agency-ESOC, Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号