首页> 外文期刊>Astrobiology >Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy
【24h】

Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy

机译:使用共置的紫外时间门控拉曼光谱仪和荧光光谱法检测干酪根作为生物特征

获取原文
获取原文并翻译 | 示例
           

摘要

The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy—Laser-induced fluorescence spectroscopy—Mars Sample Return—Mars 2020 mission—Kerogen—Biosignatures. Astrobiology 18, 431–453.
机译:火星2020任务将对原位样品进行分析,并确定在古老的可居住环境中可以保留生物特征的任何物质,以便以后返回地球。最优先的目标样品包括含水形成的沉积岩性。在地球上,此类岩性可能包含化石生物特征,如芳香族碳(干酪根)。在这项研究中,我们使用并置的紫外线激发(266 nm)时控(UV-TG)拉曼光谱仪和激光诱导荧光光谱仪,分析了多种天然,复杂样品中的未提取干酪根。我们询问样品中的干酪根及其宿主基质,以(1)探索UV-TG拉曼光谱和荧光光谱法在高优先级靶标中检测干酪根的能力,以寻找火星上可能的生物特征; (2)评估时间选通和UV激光波长在减少拉曼光谱中的荧光方面的有效性; (3)使用UV-TG拉曼光谱法确定可能挑战基于流动站的干酪根鉴定的特定样品问题。我们发现无胶的紫外线拉曼光谱适合于鉴定诊断性干酪根拉曼谱带,而不会干扰荧光,紫外线荧光光谱适合于鉴定干酪根。这些结果凸显了结合使用共置拉曼光谱和荧光光谱的价值(类似于SHERLOC在2020年火星上获得的光谱),以增强干酪根检测作为复杂天然样品中潜在生物特征的信心。关键词:拉曼光谱法-激光诱导荧光光谱法-火星样品返回-火星2020年任务-干酪根-生物特征。天体生物学18,431–453。

著录项

  • 来源
    《Astrobiology》 |2018年第4期|431-453|共23页
  • 作者单位

    School of Earth and Space Exploration, Arizona State University, Tempe, Arizona;

    The Centre for Research in Earth and Space Science (CRESS), York University, Toronto, Ontario, Canada.;

    School of Earth and Space Exploration, Arizona State University, Tempe, Arizona.;

    The Centre for Research in Earth and Space Science (CRESS), York University, Toronto, Ontario, Canada.;

    The Centre for Research in Earth and Space Science (CRESS), York University, Toronto, Ontario, Canada.;

    Flathead Lake Biological Station, University of Montana, Polson, Montana.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号