...
首页> 外文期刊>Astrobiology >An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both
【24h】

An Apparent Binary Choice in Biochemistry: Mutual Reactivity Implies Life Chooses Thiols or Nitrogen-Sulfur Bonds, but Not Both

机译:生物化学中的二元选择:相互反应性意味着生命选择硫醇或氮硫键,但不能同时选择两者

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A fundamental goal of biology is to understand the rules behind life's use of chemical space. Established work focuses on why life uses the chemistry that it does. Given the enormous scope of possible chemical space, we postulate that it is equally important to ask why life largely avoids certain areas of chemical space. The nitrogen-sulfur bond is a prime example, as it rarely appears in natural molecules, despite the very rich N-S bond chemistry applied in various branches of industry (e.g., industrial materials, agrochemicals, pharmaceuticals). We find that, out of more than 200,000 known, unique compounds made by life, only about 100 contain N-S bonds. Furthermore, the limited number of N-S bond-containing molecules that life produces appears to fall into a few very distinctive structural groups. One may think that industrial processes are unrelated to biochemistry because of a greater possibility of solvents, catalysts, and temperatures available to industry than to the cellular environment. However, the fact that life does rarely make N-S bonds, from the plentiful precursors available, and has evolved the ability to do so independently several times, suggests that the restriction on life's use of N-S chemistry is not in its synthesis.We present a hypothesis to explain life's extremely limited usage of the N-S bond: that the N-S bond chemistry is incompatible with essential segments of biochemistry, specifically with thiols. We support our hypothesis by (1) a quantitative analysis of the occurrence of N-S bond-containing natural products and (2) reactivity experiments between selected N-S compounds and key biological molecules. This work provides an example of a reason why life nearly excludes a distinct region of chemical space. Combined with future examples, this potentially new field of research may provide fresh insight into life's evolution through chemical space and its origin and early evolution.
机译:生物学的基本目标是了解生命对化学空间的使用背后的规则。既定的工作着眼于生命为何利用其化学作用。鉴于可能的化学空间范围很广,我们假设询问为什么生命在很大程度上避开某些化学空间区域同样重要。氮-硫键是一个很好的例子,尽管它在自然界的分子中很少出现,尽管在各种工业领域(例如,工业材料,农用化学品,药品)应用了非常丰富的N-S键化学。我们发现,在超过20万种已知的独特生命化合物中,只有大约100种含有N-S键。此外,生命所产生的有限数量的含N-S键的分子似乎属于几个非常独特的结构基团。人们可能会认为工业过程与生物化学无关,因为工业上可用的溶剂,催化剂和温度比细胞环境更大的可能性。然而,事实上生命很少会从大量可用的前体中形成NS键,并且已经发展了多次独立地进化的能力,这表明对NS化学的生命使用的限制并不存在。我们提出了一个假设来解释生命中NS键的使用极为有限:NS键化学与生物化学的主要部分(特别是硫醇)不相容。我们通过(1)定量分析含有N-S键的天然产物的发生以及(2)选定的N-S化合物与关键生物分子之间的反应性实验来支持我们的假设。这项工作提供了一个例子,说明生命几乎排除了化学空间的独特区域的原因。结合未来的例子,这个潜在的新研究领域可以通过化学空间及其起源和早期演化,为生命的演化提供新的见解。

著录项

  • 来源
    《Astrobiology》 |2019年第4期|579-613|共35页
  • 作者单位

    Department of Earth Atmospheric and Planetary Sciences Massachusetts Institute of Technology;

    Rufus Scientific Melbourn;

    Department of Earth Atmospheric and Planetary Sciences Massachusetts Institute of Technology|Department of Physics Massachusetts Institute of Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    N-S bond; Nitrogen-sulfur bond; Thiols; Chemical space;

    机译:N-S键;氮硫键;硫醇化学空间;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号