...
首页> 外文期刊>Artificial Life >Construction of a Biological Tissue Model Based on a Single-Cell Model: A Computer Simulation of Metabolic Heterogeneity in the Liver Lobule
【24h】

Construction of a Biological Tissue Model Based on a Single-Cell Model: A Computer Simulation of Metabolic Heterogeneity in the Liver Lobule

机译:基于单细胞模型的生物组织模型的构建:肝小叶代谢异质性的计算机模拟

获取原文
获取原文并翻译 | 示例
           

摘要

An enormous body of information has been obtained by molecular and cellular biology in the last half century. However, even these powerful approaches are not adequate when it comes to higher-level biological structures, such as tissues, organs, and individual organisms, because of the complexities involved. Thus, accumulation of data at the higher levels supports and broadens the context for that obtained on the molecular and cellular levels. Under such auspices, an attempt to elucidate mesoscopic and macroscopic subjects based on plentiful nanoscopic and microscopic data is of great potential value. On the other hand, fully realistic simulation is impracticable because of the extensive cost entailed and enormous amount of data required. Abstraction and modeling that balance the dual requirements of prediction accuracy and manageable calculation cost are of great importance for systems biology. We have constructed an ammonia metabolism model of the hepatic lobule, a histological component of the liver, based on a single-hepatocyte model that consists of the biochemical kinetics of enzymes and transporters. To bring the calculation cost within reason, the porto-central axis, which is an elemental structure of the lobule, is defined as the systems biological unit of the liver, and is accordingly modeled. A model including both histological structure and position-specific gene expression of major enzymes largely represents the physiological dynamics of the hepatic lobule in nature. In addition, heterogeneous gene expression is suggested to have evolved to optimize the energy efficiency of ammonia detoxification at the macroscopic level, implying that approaches like this may elucidate how properties at the molecular and cellular levels, such as regulated gene expression, modify higher-level phenomena of multicellular tissue, organs, and organisms.
机译:在过去的半个世纪中,分子和细胞生物学已获得了大量信息。然而,由于涉及到复杂性,即使在涉及更高层次的生物结构(例如组织,器官和单个生物)时,即使这些强大的方法也不够用。因此,更高水平的数据积累支持并拓宽了在分子和细胞水平上获得的数据的背景。在这样的主持下,基于大量的纳米和微观数据阐明介观和宏观主题的尝试具有巨大的潜在价值。另一方面,由于所需的大量成本和所需的大量数据,完全现实的仿真是不可行的。平衡预测准确性和可计算成本的双重要求的抽象和建模对于系统生物学非常重要。我们基于由酶和转运蛋白的生化动力学组成的单肝细胞模型,构建了肝小叶(肝脏的组织学成分)的氨代谢模型。为了使计算成本合理,将作为小叶的基本结构的门中轴定义为肝脏的系统生物学单位,并对其进行了建模。包含主要酶的组织学结构和位置特异性基因表达的模型在很大程度上代表了肝小叶的自然生理动力学。此外,建议在宏观水平上优化异质基因表达以优化氨解毒的能量效率,这暗示着这种方法可以阐明分子和细胞水平的特性,例如调控的基因表达如何修饰更高水平的氨基酸。多细胞组织,器官和生物的现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号