...
首页> 外文期刊>Archive of Applied Mechanics >A steady-state modeling framework incorporating the Kuroda-Tvergaard model: demonstrated on single crystal crack growth
【24h】

A steady-state modeling framework incorporating the Kuroda-Tvergaard model: demonstrated on single crystal crack growth

机译:结合了Kuroda-Tvergaard模型的稳态建模框架:在单晶裂纹扩展上进行了演示

获取原文
获取原文并翻译 | 示例
           

摘要

A new modeling framework for analyzing steady-state elastic-viscoplastic single crystal problems at micron scale is presented. The model takes as offset the higher-order gradient plasticity theory by Kuroda and Tvergaard (J Mech Phys Solids 54:1789-1810 2006), and it is strongly inspired by an existing steady-state framework for conventional elastic-viscoplastic materials. Details on the modeling framework are laid out, and the numerical challenges and stability issues are discussed. Subsequently, the modeling framework is demonstrated on Mode I steady-state crack growth in HCP single crystals, where the impact of size effects on the active plastic zone that surrounds the crack tip is investigated. The focus is on the plastic zone shape and size, as well as its influence on the macroscopic fracture toughness. In this way, the chosen benchmark problem for the new modeling framework serves as an extension to the conventional study of the corresponding problem without size effects presented in Juul et al. (J Mech Phys Solids 101:209-222 2017). The tendency is that the plastic zone is smeared out (seen as less distinct features) when increasing the material rate sensitivity. This is in-line with already published work in the literature. It is shown that the size effect has a limited effect on the qualitative features of the plastic zone, whereas it clearly suppresses the magnitude of the features due to the added gradient hardening effect. Moreover, the hardening effect tends to lower the shielding ratio, and hence a key result is that single crystal materials appear less crack resistant than conventional studies suggest at the micron scale.
机译:提出了一种新的建模框架,用于分析微米尺度的稳态弹性-粘塑性单晶问题。该模型抵消了Kuroda和Tvergaard的高阶梯度可塑性理论(J Mech Phys Solids 54:1789-1810 2006),并且强烈地受到了常规弹性粘塑性材料的现有稳态框架的启发。列出了建模框架的详细信息,并讨论了数值挑战和稳定性问题。随后,在HCP单晶的模式I稳态裂纹扩展上演示了建模框架,其中研究了尺寸效应对围绕裂纹尖端的活性塑料区域的影响。重点是塑性区的形状和大小,以及对宏观断裂韧性的影响。这样,为新的建模框架选择的基准问题可作为对相应问题的常规研究的扩展,而没有Juul等人提出的尺寸影响。 (J Mech Phys Solids 101:209-222 2017)。趋势是,当增加材料速率敏感性时,塑料区域会被涂抹(被视为不太明显的特征)。这与文献中已经发表的工作是一致的。结果表明,尺寸效应对塑性区的定性特征影响有限,而由于增加的梯度硬化效应,明显抑制了特征的大小。而且,硬化作用趋于降低屏蔽率,因此关键的结果是单晶材料在微米尺度上的抗裂性低于常规研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号