首页> 外文期刊>Arabian Journal for Science and Engineering >Stagnation Temperature Effect on the Supersonic Flow Around Pointed Airfoils with Application for Air
【24h】

Stagnation Temperature Effect on the Supersonic Flow Around Pointed Airfoils with Application for Air

机译:对空气施用的尖头翼型上的超声波流动的停滞温度效应

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of this work is to develop a new numerical calculation program to determine the effect of the stagnation temperature on the calculation of the supersonic flow around a pointed airfoils using the equations for oblique shock wave and the Prandtl-Meyer expansion, under the model at high temperature, calorically imperfect and thermally perfect gas, lower than the dissociation threshold of the molecules. The specific heat at constant pressure does not remain constant and varies with the temperature. The new model allows making corrections to the perfect gas model designed for low stagnation temperature, low Mach number, low incidence angle and low airfoil thickness. The stagnation temperature is an important parameter in our model. The airfoil should be pointed at the leading edge to allow an attached shock solution to be seen. The airfoil is discretized into several panels on the extrados and the intrados, placed one adjacent to the other. The distribution of the flow on the panel in question gives a compression or an expansion according to the deviation of the flow with respect to the old adjacent panel. The program determines all the aerodynamic characteristics of the flow and in particular the aerodynamic coefficients. The calculation accuracy depends on the number of panels considered on the airfoil. The application is made for high values of stagnation temperature, Mach number and airfoil thickness. A comparison between our high temperature model and the perfect gas model is presented, in order to determine an application limit of the latter. The application is for air.
机译:这项工作的目的是开发一种新的数值计算程序,以确定利用倾斜冲击波和普朗特-Meyer扩展的方程来确定停滞温度对超声波流动的计算的影响,并在模型下高温,热不完全和热完美的气体,低于分子的解离阈值。恒定压力下的比热不保持恒定,随温度而变化。新模型允许校正设计为低停滞温度,低马赫数,低入射角和低翼型厚度的完美气体模型。停滞温度是我们模型中的重要参数。翼型应指向前缘,以允许看到附加的震动解决方案。翼型被离散化成额外的几个板和墨西哥型,将其放置在另一个邻近。所讨论的面板上的流量的分布给出了根据流动相对于旧相邻面板的流动的压缩或扩展。该程序确定流动的所有空气动力学特征,特别是空气动力学系数。计算精度取决于翼型上考虑的面板数。该应用是用于高值的停滞温度,马赫数和翼型厚度。提出了我们的高温模型与完美气体模型的比较,以确定后者的应用限制。申请是空气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号