首页> 外文期刊>Arabian Journal for Science and Engineering. Section A, Sciences >Discrete-Phase Modelling of an Asymmetric Stenosis Artery Under Different Womersley Numbers
【24h】

Discrete-Phase Modelling of an Asymmetric Stenosis Artery Under Different Womersley Numbers

机译:不同Womersley数下不对称狭窄动脉的离散相建模

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the hemodynamics in the post-stenotic region of an asymmetric stenosis is of paramount importance in the study of atherosclerosis progression. Numerically, the analysis becomes more complex when a discrete phase is added to the continuous phase in order to understand the behaviour of atherogenic particles in a pulsatile flow environment. In the present study, discrete-phase modelling (DPM) of an asymmetric and symmetric stenosed artery models has been carried out at different Womersley numbers. The objective is to understand the correlation between the discrete-phase (atherogenic) particle behaviour with the characteristics of continuous phase (blood) under varying pulse frequencies. Continuous phase is modelled by time-averaged Navier-Stokes equations and solved by means of pressure implicit splitting of operators algorithm. DPM has been carried out with one-way coupling. The transport equations are solved in the Eulerian frame of reference, and the discrete phase is simulated in Lagrangian frame of reference. The study brings out the importance of helicity in the atherosclerosis progression. Result shows that the asymmetric stenosis model exhibits less helical flow structure and the vortical structures are not getting transported to the downstream. Consequently, the average particle residence time (PRT) of the atherogenic particles is one order higher than the symmetric stenosis model. Low PRT leads to enhanced mass transport in the arterial flow and triggers further occlusion/plaque build-up at the post-stenotic region. The extent of asymmetry in a diseased artery may be considered as a useful parameter in understanding the rate of progression of atherosclerosis.
机译:在动脉粥样硬化进展的研究中,了解不对称狭窄后狭窄区域的血流动力学至关重要。在数值上,当将离散相添加到连续相中以了解脉动流动环境中动脉粥样硬化颗粒的行为时,分析变得更加复杂。在本研究中,已经在不同的Womersley数下进行了不对称和对称的狭窄动脉模型的离散相建模(DPM)。目的是了解在可变脉冲频率下离散相(动脉粥样化)粒子行为与连续相(血液)特征之间的相关性。连续相通过时间平均Navier-Stokes方程建模,并通过算子的压力隐式分解求解。 DPM已通过单向耦合进行。在欧拉参照系中求解输运方程,在拉格朗日参照系中模拟离散相。该研究揭示了螺旋度在动脉粥样硬化进展中的重要性。结果表明,不对称狭窄模型的螺旋流动结构较少,涡旋结构没有被输送到下游。因此,动脉粥样硬化颗粒的平均颗粒停留时间(PRT)比对称狭窄模型高一个数量级。低PRT导致动脉血流的质量转运增强,并在狭窄后区域引发进一步的阻塞/斑块积聚。患病动脉的不对称程度可被认为是了解动脉粥样硬化进展速度的有用参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号