...
首页> 外文期刊>Applied Surface Science >Theoretical insight into the interaction mechanism between V_2O_5/TiO_2 (001) surface and arsenic oxides in flue gas
【24h】

Theoretical insight into the interaction mechanism between V_2O_5/TiO_2 (001) surface and arsenic oxides in flue gas

机译:烟气中V_2O_5 / TiO_2(001)表面和砷氧化物之间的相互作用机理的理论洞察

获取原文
获取原文并翻译 | 示例
           

摘要

The arsenic oxides in flue gas can cause severe poisoning and deactivation of the vanadium-titanium-based denitrification catalyst. Investigation of the interaction mechanism between arsenic oxides and denitrification catalyst can provide theoretical guidance for the development of anti-arsenic poisoning catalyst. To this end, the periodic V2O5-TiO2 (001) models were constructed to represent the actual vanadium-titanium-based catalyst in this study. Density functional theory (DFT) calculations were applied to explore the interaction mechanism between the catalyst surface and typical arsenic oxide (As2O3) in flue gas. Stable adsorption configurations and adsorption energies for As2O3 and NH3 adsorption were calculated, the detailed interaction pathways and reaction barriers were also obtained. The results indicate that As2O3 is chemisorbed on the catalyst surface, strong interaction and electron transfer occur after As2O3 adsorption. The adsorption strength of NH3 on Lewis and Bronsted sites are decreased after As2O3 adsorption and the inhibition effect on the Lewis acid sites is much stronger. As2O3 is oxidized to As2O5 on catalyst surface, the Lewis acid sites (V = O) are destroyed and the valence of vanadium is decreased, which should be responsible for the catalyst deactivation. The analysis of the interaction pathway shows that As2O3 inclines to react with two adjacent V2O5 clusters to produce V2O4 because of the lowest energy barrier. Therefore, when the catalyst is poisoned by As2O3 in flue gas, the active component V2O5 inclines to generate V2O4, which is consistent with previous experimental researches.
机译:烟道气中的砷氧化物可引起钒 - 钛基脱氮催化剂的严重中毒和失活。砷氧化物和反硝化催化剂之间的相互作用机理的研究可以为抗砷中毒催化剂的发育提供理论指导。为此,构建了周期性V2O5-TiO2(001)模型以代表该研究中的实际钒 - 钛基催化剂。密度函数理论(DFT)计算用于探索烟道气中催化剂表面和典型砷氧化物(AS2O3)之间的相互作用机理。计算稳定的吸附配置和AS2O3和NH 3吸附的吸附能量,也得到了详细的相互作用途径和反应屏障。结果表明,As2O3在催化剂表面上化学吸附,在As2O 3吸附后发生强相互作用和电子转移。在As2O 3吸附后,Lewis和勃朗斯特位点对Lewis和Bronsted部位的吸附强度降低,并且对Lewis酸部位的抑制作用强大。 As2O3在催化剂表面上氧化至As2O5,破坏路易斯酸性位点(V = O)并降低钒的价值,这应该是催化剂去激活的原因。相互作用途径的分析表明,由于能量屏障最低,AS2O3与两个相邻的V2O5簇反应以产生V2O4。因此,当催化剂在烟道气中受到As2O 3中毒时,活性组分V2O5倾向于产生V2O4,这与先前的实验研究一致。

著录项

  • 来源
    《Applied Surface Science》 |2021年第1期|147752.1-147752.9|共9页
  • 作者单位

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

    North China Elect Power Univ Natl Engn Lab Biomass Power Generat Equipment Beijing 102206 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    As2O3; Vanadium-titanium-based catalyst; Interaction mechanism; Density functional theory;

    机译:AS2O3;钒 - 钛基催化剂;相互作用机制;密度函数理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号