首页> 外文期刊>Applied Surface Science >The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: Photo-mechanical versus photo-thermal damage of metal targets
【24h】

The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: Photo-mechanical versus photo-thermal damage of metal targets

机译:脉冲持续时间对电子热传导和电子-声子相互作用的相互作用的影响:金属靶的光机械与光热损伤

获取原文
获取原文并翻译 | 示例
           

摘要

Here we present a theoretical work on short pulse laser interaction with metal targets. With the help of Two Temperature Model we consider in detail the interplay of two competitive mechanism of the laser deposited energy dissipation: the fast electron heat conduction and the electron-phonon interaction processes. For a range of pulse durations the modelling included a complex description of these processes as the functions of the electron and phonon temperatures. It was shown that for transitional type of metals the maximum surface temperature determined for a range of pulse durations at fixed fluence exhibits peak behavior and the corresponding pulse duration is close to the electron-phonon relaxation time. In contrast, having complex deviation of heat conductivity from its linear growth with the electronic temperature, the group of noble metals shows different behavior in maximum surface temperature depending on the fluence regime. Based on the results, an experimental approach in measuring the electron-phonon relaxation time is suggested and a general tendency of photomechanical versus photo-thermal damage of metal targets is deduced.
机译:在这里,我们提出了关于短脉冲激光与金属靶相互作用的理论研究。在两个温度模型的帮助下,我们详细考虑了激光沉积能量耗散的两个竞争机制的相互作用:快速电子热传导和电子-声子相互作用过程。对于一定范围的脉冲持续时间,建模包括对这些过程作为电子和声子温度函数的复杂描述。结果表明,对于过渡类型的金属,在固定注量下,在一定脉冲持续时间内确定的最大表面温度表现出峰值行为,相应的脉冲持续时间接近电子-声子弛豫时间。相反,贵族金属的导热率与其线性增长的复杂偏差随电子温度而变,根据注量范围,其在最大表面温度下表现出不同的行为。根据结果​​,提出了一种测量电子-声子弛豫时间的实验方法,并推论了金属靶的光机械与光热损伤的一般趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号