首页> 外文期刊>Applied Surface Science >Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study
【24h】

Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study

机译:通过引入嵌入的钴纳米团簇作为促进剂,通过在Cu(100)表面上进行CO加氢来改善CO2的离解和转化为甲醇:DFT研究

获取原文
获取原文并翻译 | 示例
       

摘要

The dissociation and hydrogenation of CO2 on Cu(100) surfaces that are modified by introducing Co nanoclusters with different size into the top layer have been investigated using density functional theory method. Our results show that on all surfaces the Co atoms are the sites for the adsorption of CO2, and in the early stage of introducing Co dopant, the chemisorption behavior of CO2 is sensitive to the amount of Co atom. According to the predicted pathways for the dissociation of CO2 to CO, it is interesting that the energy barrier decreases first and then increases as more Co atoms are dispersed on the surface, forming a "V" shape. The minimum energy barrier of CO2 decomposition is predicted on the Cu(100) surface that contains four Co atoms aggregated together on the top layer, namely Co-4/Cu(100) bimetallic surface. The most favorable reaction pathway for the hydrogenation of CO to methanol on such surface is further determined, which follows the sequence of CO*-> HCO*-> H2CO*-> H3CO*-> (HCOH)-C-3*, and the rate-limiting step is the hydrogenation of H3CO species with an activation barrier of 106.4 kJ/mol. It is noted that with respect to the pure Cu(100), since more stronger Co-O adsorption bonds are formed on the Co-modified surface, the stability of formaldehyde intermediate is significantly enhanced. Correspondingly, the introducing of Co-4 cluster tends to improve the productivity and selectivity towards methanol synthesis on Cu(100) surface. (C) 2017 Elsevier B.V. All rights reserved.
机译:通过使用密度泛函理论方法研究了通过在顶部引入不同尺寸的Co纳米团簇而改性的Cu(100)表面上的CO2的解离和氢化。我们的结果表明,在所有表面上,Co原子都是CO2的吸附位,并且在引入Co掺杂剂的早期,CO2的化学吸附行为对Co原子的数量敏感。根据预测的CO2分解为CO的途径,有趣的是,随着更多的Co原子分散在表面上,能垒先降低,然后增加,形成“ V”形。在包含顶层中聚集在一起的四个Co原子的Cu(100)表面(即Co-4 / Cu(100)双金属表面)上预测了CO2分解的最小能垒。进一步确定了在此类表面上将CO加氢为甲醇的最有利的反应路径,该路径遵循CO *-> HCO *-> H2CO *-> H3CO *->(HCOH)-C-3 *的顺序,以及限速步骤是H3CO物种的氢化,其活化势垒为106.4 kJ / mol。注意,对于纯Cu(100),由于在Co-改性的表面上形成了更强的Co-O吸附键,因此甲醛中间体的稳定性显着提高。相应地,Co-4团簇的引入倾向于提高生产率和对Cu(100)表面甲醇合成的选择性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2018年第ptaa期|837-847|共11页
  • 作者单位

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China|Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China|Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China;

    Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China|Fujian Prov Key Lab Theoret & Computat Chem, Xiamen 361005, Fujian, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Density functional theory; Bimetallic alloys; CO2 reduction; Methanol synthesis;

    机译:密度泛函理论双金属合金CO2还原甲醇合成;
  • 入库时间 2022-08-18 03:04:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号