首页> 外文期刊>Applied Physics >Preparation method of Ce_(1-x)Zr_xO_2/tourmaline nanocomposite with high far-infrared emissivity and its mechanism
【24h】

Preparation method of Ce_(1-x)Zr_xO_2/tourmaline nanocomposite with high far-infrared emissivity and its mechanism

机译:高远红外发射率的Ce_(1-x)Zr_xO_2 /电气石纳米复合材料的制备方法及其机理

获取原文
获取原文并翻译 | 示例
           

摘要

Far-infrared functional nanocomposites were prepared by the coprecipitation method using natural tourmaline (XY_3Z_6Si_6O_(18)(BO_3)_3V_3W, where X is Na~+, Ca~(2+), K~+, or vacancy; Y is Mg~(2+), Fe~(2+), Mn~(2+), Al~(3+), Fe~(3+), Mn~(3+), Cr~(3+), Li~+, or Ti~(4+); Z is Al~(3+), Mg~(2+), Cr~(3+), or V~(3+); V is O~(2-), OH~-; and W is O~(2-), OH~-, or F~-) powders, ammonium cerium(Ⅳ) nitrate and zirconium(Ⅳ) nitrate pentahydrate as raw materials. The reference sample tourmaline modified with ammonium cerium(Ⅳ) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that Ce-Zr can further enhance the far-infrared emission properties of tourmaline than Ce alone. Through characterization by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), the mechanism by which Ce(-Zr) acts on the far-infrared emission property of tourmaline was systematically studied. The XPS spectra show that the Fe~(3+) ratio inside tourmaline powders after heat treatment can be raised by doping Ce and further raised after adding Zr. Moreover, it is showed that Ce~(3+) is dominant inside the samples, but its dominance is replaced by Ce~(4+) outside. In addition, XRD results indicate the formation of CeO_2 and Ce_(1-x)Zr_xO_2 crystallites during the heat treatment, and further, TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr-doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe~(2+) (0.074 nm in radius) to Fe~(3+) (0.064 nm in radius) inside the tourmaline caused by Zr enhancing the redox shift between Ce~(4+) and Ce~(3+) via improving the oxygen mobility in the Ce-Zr crystal.
机译:通过共沉淀法使用天然电气石(XY_3Z_6Si_6O_(18)(BO_3)_3V_3W,其中X为Na〜+,Ca〜(2 +),K〜+或空位; Y为Mg〜( 2 +),Fe〜(2 +),Mn〜(2 +),Al〜(3 +),Fe〜(3 +),Mn〜(3 +),Cr〜(3 +),Li〜+,或Ti〜(4 +); Z为Al〜(3 +),Mg〜(2 +),Cr〜(3+)或V〜(3 +); V为O〜(2-),OH〜 -;并且W是O〜(2-),OH〜-或F〜-)粉末,​​硝酸铈铈(Ⅳ)和五水硝酸锆(Ⅳ)为原料。还通过类似的沉淀路线制备了单独用硝酸铈铈(Ⅳ)改性的参考电气石样品。傅里叶变换红外光谱的结果表明,Ce-Zr比单独使用Ce可以进一步增强电气石的远红外发射特性。通过X射线衍射(XRD),透射电子显微镜(TEM)和X射线光电子能谱(XPS)表征,系统研究了Ce(-Zr)作用于电气石远红外发射特性的机理。 XPS光谱表明,掺杂Ce可以提高热处理后电气石粉内部的Fe〜(3+)比,加入Zr可以进一步提高。此外,表明Ce〜(3+)在样品内部占主导地位,但其优势被外部的Ce〜(4+)取代。另外,XRD结果表明在热处理期间形成了CeO_2和Ce_(1-x)Zr_xO_2微晶,并且,TEM观察表明它们以电气石的形式存在于电气石粉末表面。基于这些结果,我们将掺杂Ce-Zr的电气石改善的远红外发射特性归因于由于Fe〜(2 +)(半径为0.074 nm)的更多氧化而导致电气石的单位晶格收缩增强。 Zr引起的电气石内部的〜(3 +)(半径为0.064 nm)通过改善Ce-Zr晶体中的氧迁移率而增强了Ce〜(4+)和Ce〜(3+)之间的氧化还原位移。

著录项

  • 来源
    《Applied Physics》 |2016年第2期|89.1-89.7|共7页
  • 作者单位

    State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China,University of Chinese Academy of Sciences, Beijing 100049, China;

    State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;

    State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China,University of Chinese Academy of Sciences, Beijing 100049, China;

    State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;

    State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号