首页> 外文期刊>Applied physics >Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires
【24h】

Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires

机译:具有50 nm宽超导线的超低暗计数率和高系统效率单光子检测器

获取原文
获取原文并翻译 | 示例
           

摘要

Both system detection efficiency (DE) and dark count rate (DCR) are critical parameters of single-photon detectors for practical applications. For a superconducting nanowire single-photon detector (SNSPD), DE is always achieved with high bias current, which also produces high dark count rate. In this paper, we analyzed the DE of SNSPD with 50 nm NbN nanowires patterned on the films with a thickness of 4 and 6 nm. The maximum DE for communication wavelengths is 10.3% at 1310 nm with a 50 nm-wide and 4 nm-thick device. The chip with 6 nm thickness shows high DE at ultra-low dark count rate. For example, DEs of 32% for 404 nm photons and 21 % for 660 nm photons were achieved at a low dark count rate of 0.01 Hz. Comparing with the SNSPD with 4 nm-thick films, the improved DE for visible photons with the 6 nm-thick SNSPD is caused by the increased absorbance of NbN films, which also reduced the dark count rate produced by thermal activation around film defects. By optimizing the micro-fabrication process and further decreasing the nanowire width while retaining uniformity, the wavelength response of the 6 nm-thick SNSPD may be extended to infrared photons.
机译:对于实际应用,系统检测效率(DE)和暗计数率(DCR)都是单光子检测器的关键参数。对于超导纳米线单光子检测器(SNSPD),DE总是以高偏置电流实现,这也产生了高暗计数率。在本文中,我们分析了在厚度为4和6 nm的膜上构图的50 nm NbN纳米线形成的SNSPD的DE。使用50 nm宽和4 nm厚的器件,在1310 nm处通信波长的最大DE为10.3%。厚度为6 nm的芯片在超低暗计数率下显示出高DE。例如,在0.01 Hz的低暗计数率下,对于404 nm光子的DEs为32%,对于660 nm光子的DEs为21%。与具有4 nm厚膜的SNSPD相比,具有6 nm厚SNSPD的可见光子的DE改善是由于NbN膜的吸光度增加,这也降低了由膜缺陷周围的热活化产生的暗计数率。通过优化微细加工工艺并在保持均匀性的同时进一步减小纳米线的宽度,可以将6 nm厚的SNSPD的波长响应扩展到红外光子。

著录项

  • 来源
    《Applied physics》 |2011年第4期|p.867-871|共5页
  • 作者单位

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

    Research Institute of Superconductor Electronics (RISE), Nanjing University, Nanjing 210093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号