...
首页> 外文期刊>Applied physics >Ray tracing of chemiluminescence in an unconfined non-premixed turbulent jet flame using large-eddy simulation
【24h】

Ray tracing of chemiluminescence in an unconfined non-premixed turbulent jet flame using large-eddy simulation

机译:大涡模拟在无侧限非预混湍流火焰中化学发光的射线追踪

获取原文
获取原文并翻译 | 示例
           

摘要

Optical diagnostic techniques, such as chemiluminescence imaging, are commonly used to study turbulent flames. Inherent to turbulent flames is the spatio-temporal variation of the volumetric distribution of temperature and chemical composition. In consequence, the index of refraction varies accordingly and causes distortion of any optical ray intersecting the turbulent flame. This distortion is well known as beam steering. Beam steering may degrade imaging quality by reducing the overall spatial resolution. Its impact of course depends on the actual specifications of the imaging system itself. In this study a methodology is proposed to tackle this issue numerically and is exemplified for chemiluminescence imaging in a well-known turbulent hydrogen-fueled jet flame. Large-eddy simulation (LES) of this unconfined non-premixed flame is used to simulate instantaneous volumetric distributions of the flow and scalar fields including the local index of refraction. This simulation additionally predicts local concentrations of electronically excited chemiluminescent active species. At locations with significantly high concentrations of luminescent species, optical rays are initiated in the direction of the array detector used for recording single chemiluminescence images. Assuming the validity of geometrical optics, these rays are tracked along their pathways. Their direction of propagation changes according to the local instantaneous distribution of the index of refraction. After leaving the computational domain of the ray tracing code which is fed by the LES, each ray is processed by the commercial code ZEMAX® and imaged onto an array detector. Measured and numerically simulated ensemble-averaged chemiluminescence images are compared to each other. Overall, a satisfying agreement is observed. The primary aim of this paper is the exposition of this method where numerical and experimental results are not any more compared in the flame but where this comparison is shifted to the imaging plane. Future extensions to higher pressures in enclosed combustors or internal combustion engines where beam-steering effects are much more pronounced than in atmospheric jet flames are addressed.
机译:光学诊断技术(例如化学发光成像)通常用于研究湍流火焰。湍流火焰固有的是温度和化学成分的体积分布的时空变化。结果,折射率相应地变化并且导致与湍流火焰相交的任何光线的畸变。这种失真被称为光束转向。光束转向可能会通过降低整体空间分辨率而降低成像质量。当然,其影响取决于成像系统本身的实际规格。在这项研究中,提出了一种方法来从数字上解决这个问题,并以众所周知的湍流氢燃料喷射火焰中的化学发光成像为例。这种无侧限的非预混火焰的大涡模拟(LES)用于模拟流场和标量场的瞬时体积分布,包括局部折射率。该模拟还预测了电子激发的化学发光活性物质的局部浓度。在发光物质浓度非常高的位置,沿用于记录单个化学发光图像的阵列检测器的方向发出光线。假设几何光学的有效性,这些光线将沿着其路径进行跟踪。它们的传播方向根据折射率的局部瞬时分布而变化。在离开由LES馈送的光线跟踪代码的计算域之后,每条光线都由商业代码ZEMAX®处理并成像到阵列检测器上。将经过测量和数值模拟的整体平均化学发光图像相互比较。总体而言,观察到令人满意的协议。本文的主要目的是阐述这种方法,其中不再在火焰中比较数值和实验结果,而是将这种比较移到成像平面。解决了封闭式燃烧器或内燃发动机中更高的压力的未来扩展,在这些燃烧器中,束流控制效果比大气喷射火焰中更为明显。

著录项

  • 来源
    《Applied physics》 |2012年第3期|p.603-610|共8页
  • 作者单位

    Center of Smart Interfaces, Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, L1108 Petersenstrasse 32, 64287 Darmstadt, Germany;

    Institute of Energy and Powerplant Technology, Technical University of Darmstadt, L101 Petersenstrasse 30, 64287 Darmstadt, Germany;

    Center of Smart Interfaces, Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, L1108 Petersenstrasse 32, 64287 Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号