...
首页> 外文期刊>Applied Physics Letters >Strong magnon-photon coupling with chip-integrated YIG in the zero-temperature limit
【24h】

Strong magnon-photon coupling with chip-integrated YIG in the zero-temperature limit

机译:零温度限制中具有芯片集成的强大的Magnon-Photon耦合

获取原文
获取原文并翻译 | 示例
           

摘要

The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon-polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y_3Fe_5O_(12), YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology-taking advantage of precision placement down to the micrometer scale-to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.
机译:旋转波和超导技术的交叉集成是用于创建用于将来信息处理技术的新型混合装置存储,操纵或转换古典和量子制度的数据的有希望的方法。已经使用散装铁石榴石(Y_3FE_5O_(12),YIG)和三维微波光子腔广泛研究了Hybrid Magnon-Polariton系统。然而,迄今为止,YIG增长的局限性阻止了其掺入CMOS兼容技术,例如高质量因子超导量子技术。为了克服这种障碍,我们已经使用等离子体聚焦离子束(PFIB)技术 - 利用精度放置到微米级 - 与超导微波器件集成。使用平面微波电路在PFIB加工的YIG样品上的Millikelvin温度下测量了铁磁性共振。此外,我们通过在将系统降低到微米刻度的同时,展示超导谐振器和YIG铁磁谐振模式之间的强耦合。这种强耦合片的这种成果是朝向旋转波和超导组分的功能性混合量子器件制造的关键步骤。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第3期|033502.1-033502.7|共7页
  • 作者单位

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    Center for Magnetism and Magnetic Materials Department of Physics and Energy Science University of Colorado Colorado Springs Colorado Springs Colorado 80918 USA;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    SUPA School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    Center for Magnetism and Magnetic Materials Department of Physics and Energy Science University of Colorado Colorado Springs Colorado Springs Colorado 80918 USA;

    Center for Magnetism and Magnetic Materials Department of Physics and Energy Science University of Colorado Colorado Springs Colorado Springs Colorado 80918 USA;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom School of Engineering & Physical Sciences Heriot-Watt University Edinburgh EH14 4AS United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

    SUPA School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ United Kingdom;

    James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow C12 8QQ United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号