首页> 外文期刊>Applied Physics Letters >On-chip integration of Si/SiGe-based quantum dots and switched-capacitor circuits
【24h】

On-chip integration of Si/SiGe-based quantum dots and switched-capacitor circuits

机译:基于Si / SiGe的量子点和开关电容电路的片上集成

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state qubits integrated on semiconductor substrates currently require at least one wire from every qubit to the control electronics, leading to a so-called wiring bottleneck for scaling. Demultiplexing via on-chip circuitry offers an effective strategy to overcome this bottleneck. In the case of gate-defined quantum dot arrays, specific static voltages need to be applied to many gates simultaneously to realize electron confinement. When a charge-locking structure is placed between the quantum device and the demultiplexer, the voltage can be maintained locally. In this study, we implement a switched-capacitor circuit for charge-locking and use it to float the plunger gate of a single quantum dot. Parallel plate capacitors, transistors, and quantum dot devices are monolithically fabricated on a Si/SiGe-based substrate to avoid complex off-chip routing. We experimentally study the effects of the capacitor and transistor size on the voltage accuracy of the floating node. Furthermore, we demonstrate that the electrochemical potential of the quantum dot can follow a 100 Hz pulse signal while the dot is partially floating, which is essential for applying this strategy in qubit experiments.
机译:集成在半导体基板上的固态Qubits当前需要至少一根电线到控制电子设备,导致所谓的布线瓶颈进行缩放。通过片上电路解复用提供了克服这一瓶颈的有效策略。在门限定量子点阵列的情况下,需要同时将特定的静电电压应用于许多栅极以实现电子限制。当放置在量子器件和多路分解器之间的电荷锁定结构时,电压可以在本地保持。在这项研究中,我们实现了一个用于锁定的开关电容电路,并使用它漂浮单个量子点的柱塞栅极。平行板电容器,晶体管和量子点器件在基于Si / SiGe的基板上单模制造,以避免复杂的片外路由。我们通过实验研究电容器和晶体管大小对浮动节点的电压精度的影响。此外,我们证明量子点的电化学电位可以遵循100Hz脉冲信号,而点部分浮动,这对于在量子位实验中应用该策略至关重要。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第14期|144002.1-144002.5|共5页
  • 作者单位

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Netherlands Organization for Applied Scientific Research (TNO) Stieltjesweg 1 2628 CK Delft The Netherlands;

    QuTech and Netherlands Organization for Applied Scientific Research (TNO) Stieltjesweg 1 2628 CK Delft The Netherlands;

    QuTech and Netherlands Organization for Applied Scientific Research (TNO) Stieltjesweg 1 2628 CK Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

    QuTech and Kavli Institute of Nanoscience Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号