首页> 外文期刊>Applied Physics Letters >Speed enhancement of magnetic logic-memory device by insulator-to-metal transition
【24h】

Speed enhancement of magnetic logic-memory device by insulator-to-metal transition

机译:通过绝缘子到金属转换磁逻辑存储器件的速度增强

获取原文
获取原文并翻译 | 示例
           

摘要

Complementary metal-oxide-semiconductor logic circuits used in conventional computers require frequent communication with external nonvolatile memory, causing the memory wall problem. Recently reported magnetic logic with reconfigurable logic operation and built-in nonvolatile memory can potentially bridge this gap. However, its high-frequency performance is not well studied. Here, we first perform experimental and theoretical investigation on the switching time of magnetic logic-memory devices combining magnetic units and negative differential resistance (NDR) of semiconductors. It is found that the switching time of S-type NDR (transistor circuits) in logic operations is ~300 ns and determined by the transistor's internal turn-on properties. We then propose a magnetic logic-memory device by coupling the anomalous Hall effect in magnetic materials and the insulator-to-metal transition in VO_2. Our device realizes reliable output (output ratio >1000%), a low work magnetic field (<20 mT), and excellent high-frequency performance (switching time =1-10 ns).
机译:传统计算机中使用的互补金属 - 氧化物半导体逻辑电路需要与外部非易失性存储器频繁通信,从而导致内存墙壁问题。最近报告的磁逻辑具有可重新配置的逻辑操作和内置的非易失性存储器可能会桥接这种间隙。但是,它的高频性能也没有很好地研究。这里,我们首先对组合半导体和负差分电阻(NDR)的磁逻辑存储器件的开关时间进行实验和理论研究。发现S型NDR(晶体管电路)在逻辑操作中的切换时间为〜300ns,并由晶体管的内部开启属性确定。然后,我们通过在VO_2中耦合磁性材料中的异常霍采效果和VO_2中的绝缘体 - 金属转变来提出磁逻辑存储器件。我们的装置实现了可靠的输出(输出比> 1000%),低工作磁场(<20吨)和出色的高频性能(开关时间= 1-10ns)。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第2期|022407.1-022407.5|共5页
  • 作者单位

    Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China;

    Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China;

    Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China;

    Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China;

    Department of Physics and Lab of Solid State Microstructures and Quantum Control School of Electronic Science and Applied Physics Hefei University of Technology Hefei Anhui 230009 People's Republic of China;

    Institute of Microelectronics Tsinghua University Beijing 100084 China;

    Department of Physics and Lab of Solid State Microstructures and Quantum Control School of Electronic Science and Applied Physics Hefei University of Technology Hefei Anhui 230009 People's Republic of China;

    Division of Physical Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 239955 Kingdom of Saudi Arabia;

    Key Laboratory of Advanced Materials (MOE) School of Materials Science and Engineering Tsinghua University Beijing 100084 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号