首页> 外文期刊>Applied Physics Letters >Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment
【24h】

Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment

机译:用于流体环境中基于氮空位集成体的锥形超高数值孔径光纤尖端

获取原文
获取原文并翻译 | 示例
       

摘要

Fixing a diamond containing a high density of Nitrogen-Vacancy (NV) center ensembles on the apex of a multimode optical fiber (MMF) extends the applications of NV-based endoscope sensors. Replacing the normal MMF with a tapered MMF (MMF-taper) has enhanced the fluorescence (FL) collection efficiency from the diamond and achieved a high spatial resolution NV-based endoscope. The MMF-taper's high FL collection efficiency is the direct result of multiple internal reflections in the tapered region caused by silica, which has a higher refractive index (RI) than the surrounding air. However, for applications involving fluidic environments whose RI is close to or higher than that of the silica, the MMF-taper loses its FL collection significantly. Here, to overcome this challenge and achieve a high spatial resolution NV-based endoscope in a fluidic environment, we conceptually proposed a tapered ultra-high numerical aperture microstructured optical fiber (MOF) whose air capillaries at the tapered end are sealed. Since the end-sealed air capillaries along the tapered MOF (MOF-taper) have isolated the MOF core from the surrounding medium, the core retains its high FL collection and NV excitation efficiency in liquids regardless of their RI values. Replacing the MMF-taper with the MOF-taper will achieve a versatile NV-based endoscope that could potentially find widespread applications in fluidic environments where many biological processes and chemical reactions occur.
机译:将包含高密度氮空缺(NV)中心组件的钻石固定在多模光纤(MMF)的顶点上,扩展了基于NV的内窥镜传感器的应用范围。用锥形MMF(锥度锥度)代替普通MMF可以增强钻石的荧光(FL)收集效率,并实现了基于NV的高空间分辨率内窥镜。 MMF锥度的高FL收集效率是由二氧化硅引起的在锥形区域内多次内部反射的直接结果,该二氧化硅比周围的空气具有更高的折射率(RI)。但是,对于涉及RI接近或高于二氧化硅的流体环境的应用,MMF锥度会明显失去其FL收集性能。在这里,为了克服这一挑战并在流体环境中实现基于高空间分辨率NV的内窥镜,我们从概念上提出了一种锥形超高数值孔径微结构化光纤(MOF),其锥形端的空气毛细管已被密封。由于沿锥形MOF(MOF锥)的端部密封空气毛细管已将MOF磁芯与周围介质隔离开,因此,无论其RI值如何,该磁芯在液体中均保持其高FL收集和NV激发效率。用MOF锥代替MMF锥将实现基于NV的多功能内窥镜,该内窥镜有可能在发生许多生物过程和化学反应的流体环境中找到广泛的应用。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第11期|113701.1-113701.5|共5页
  • 作者单位

    Max-Planck Research Croup Nanoscale Spin Imaging Max Planck Institute for Biophysical Chemistry Am Fassberg 11 Gottingen 37077 Germany;

    Institute of Atomic and Molecular Sciences Academia Sinica Taipei 106 Taiwan Department of Physics Stanford University Stanford California 94305 USA;

    Institute of Atomic and Molecular Sciences Academia Sinica Taipei 106 Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号