首页> 外文期刊>Applied Physics Letters >Enhanced coherence and decoupled surface states in topological insulators through structural disorder
【24h】

Enhanced coherence and decoupled surface states in topological insulators through structural disorder

机译:通过结构无序增强了拓扑绝缘子的相干性和去耦表面状态

获取原文
获取原文并翻译 | 示例
           

摘要

To harness the true potential of topological insulators as quantum materials for information processing, it is imperative to maximise topological surface state conduction while simultaneously improving their quantum coherence. However, these goals have turned out to be contradictory. Surface dominated transport in topological insulators has been achieved primarily through compensation doping of bulk carriers which introduces tremendous electronic disorder and drastically deteriorates electronic coherence. In this work, we use structural disorder instead of electronic disorder to manipulate the electrical properties of thin films of topological insulator Bi2Se3. We achieve decoupled surface state transport in our samples and observe significantly suppressed carrier dephasing rates in the coupled surface state regime. As the film thickness is decreased, the dephasing rate evolves from a linear to a super-linear temperature dependence. While the former is consistent with Nyquist electron-electron interactions, the latter leads to significantly enhanced coherence at low temperatures and is indicative of energy exchange due to frictional drag between the two surface states. Our work opens up the way to harness topological surface states, without being afflicted by the deleterious effects of compensation doping. Published by AIP Publishing.
机译:为了利用拓扑绝缘体的真正潜力作为用于信息处理的量子材料,必须最大化拓扑表面态传导,同时提高其量子相干性。然而,事实证明这些目标是矛盾的。拓扑绝缘子中以表面为主的传输主要是通过对大体积载流子进行补偿掺杂来实现的,这会引入巨大的电子紊乱并严重破坏电子相干性。在这项工作中,我们使用结构无序而不是电子无序来操纵拓扑绝缘体Bi2Se3薄膜的电性能。我们在样品中实现了解耦的表面态传输,并在耦合的表面态体系中观察到了明显抑制的载流子相移速率。随着膜厚度的减小,移相速率从线性温度依赖性演变为超线性温度依赖性。前者与奈奎斯特电子-电子相互作用相一致,而后者导致低温下的相干性显着增强,并且由于两个表面状态之间的摩擦阻力而表明能量交换。我们的工作开辟了利用拓扑表面状态的方式,而不受补偿掺杂的有害影响。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号