首页> 外文期刊>Applied Physics Letters >Rapid acoustophoretic motion of microparticles manipulated by phononic crystals
【24h】

Rapid acoustophoretic motion of microparticles manipulated by phononic crystals

机译:声子晶体操纵的微粒的快速声电泳运动

获取原文
获取原文并翻译 | 示例
           

摘要

We present the acoustophoretic motion of microparticles simultaneously driven by the acoustic streaming induced drag force (ASF) and acoustic radiation force (ARF) on a phononic crystal plate (PCP). A much faster acoustophoresis can be achieved via a PCP than a traditional standing wave in bulk and surface acoustic wave devices. The mechanism is attributed to the significantly enhanced ASF and ARF originating from the resonant excitation of a nonleaky zero-order antisymmetric Lamb mode intrinsically in the plate, which generates the highly localized field vertical to the surface and periodic field parallel to the surface. We also demonstrate the transition from the ASF dominated acoustophoresis to ARF dominated acoustophoresis as a function of particle size. The predicted trajectories and velocity of acoustophoretic particles by the proposed finite element model are in reasonable agreement with experimental phenomena. This study would aid the development of simple, scalable, integrated, and disposable phononic crystal based acoustofluidic systems for biomedical applications such as rapid mixing, cell trapping, sorting, and patterning. Published by AIP Publishing.
机译:我们提出了在声子晶体板(PCP)上由声流感应阻力(ASF)和声辐射力(ARF)同时驱动的微粒的声电泳运动。通过PCP可以比体声和表面声波设备中的传统驻波更快地进行声泳。该机制归因于ASF和ARF的显着增强,该ASF和ARF源自板中固有的非泄漏零阶反对称Lamb模式的共振激发,从而产生了垂直于表面的高度局部化场和平行于表面的周期性场。我们还证明了从ASF为主的声电泳到ARF为主的声电泳的转变是粒径的函数。所提出的有限元模型预测的声泳粒子的轨迹和速度与实验现象基本吻合。这项研究将有助于开发简单,可扩展,集成和一次性的基于声子晶体的声流体系统,用于生物医学应用,例如快速混合,细胞捕获,分选和图案化。由AIP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第17期|173503.1-173503.5|共5页
  • 作者单位

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Guangdong, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Univ Vermont, Dept Phys, Burlington, VT 05405 USA;

    Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号