首页> 外文期刊>Applied Physics Letters >Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection
【24h】

Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection

机译:通过增强陷阱诱导的空穴注入来提高近红外纳米复合光电探测器的灵敏度

获取原文
获取原文并翻译 | 示例
           

摘要

We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2-3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11 × 10~(10) Jones due to the simultaneously suppressed noise and enhanced gain.
机译:我们报告了纳米复合材料/阴极界面处富含氧化锌纳米颗粒(ZnO NPs)的表面增强了纳米复合材料近红外光电探测器的光电导增益。使用氩等离子体刻蚀工艺去除纳米复合膜表面的聚合物,从而得到富含ZnO NPs的表面。另一种方法是将ZnO NPs薄层旋涂到纳米复合材料层上。富含ZnO NPs的表面用作电子陷阱,在反向偏压下诱导二次空穴注入,增加了空穴注入,因此外部量子效率提高了2-3倍。由于蚀刻顶部纳米复合材料层,暗电流同时下降了一个数量级。由于同时抑制了噪声和增强了增益,在800 nm处的比检测率提高了7.4倍,达到1.11×10〜(10)Jones。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第2期|023301.1-023301.4|共4页
  • 作者单位

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号