首页> 外文期刊>Applied Physics Letters >Thermal resistance optimization of GaN/substrate stacks considering thermal boundary resistance and temperature-dependent thermal conductivity
【24h】

Thermal resistance optimization of GaN/substrate stacks considering thermal boundary resistance and temperature-dependent thermal conductivity

机译:考虑热边界电阻和随温度变化的热导率的GaN /衬底叠层的热阻优化

获取原文
获取原文并翻译 | 示例
           

摘要

Here, we investigate the effects of thermal boundary resistance (TBR) and temperature-dependent thermal conductivity on the thermal resistance of GaN/substrate stacks. A combination of parameters such as substrates {diamond, silicon carbide, silicon, and sapphire}, thermal boundary resistance {10-60m~2K/GW}, heat source lengths {10nm-20μm}, and power dissipation levels {1-8W} are studied by using technology computer-aided design (TCAD) software Synopsys. Among diamond, silicon carbide, silicon, and sapphire substrates, the diamond provides the lowest thermal resistance due to its superior thermal conductivity. We report that due to non-zero thermal boundary resistance and localized heating in GaN-based high electron mobility transistors, an optimum separation between the heat source and substrate exists. For high power (i.e., 8 W) heat dissipation on high thermal conductive substrates (i.e., diamond), the optimum separation between the heat source and substrate becomes submicron thick (i.e., 500nm), which reduces the hotspot temperature as much as 50 ℃ compared to conventional multi-micron thick case (i.e., 4 μm). This is attributed to the thermal conductivity drop in GaN near the heat source. Improving the TBR between GaN and diamond increases temperature reduction by our further approach. Overall, we provide thermal management design guidelines for GaN-based devices.
机译:在这里,我们研究了热边界电阻(TBR)和随温度变化的热导率对GaN /衬底叠层热阻的影响。参数的组合,例如衬底{金刚石,碳化硅,硅和蓝宝石},热边界电阻{10-60m〜2K / GW},热源长度{10nm-20μm}和功耗水平{1-8W}通过使用技术计算机辅助设计(TCAD)软件Synopsys进行研究。在金刚石,碳化硅,硅和蓝宝石衬底中,由于其优越的导热性,金刚石提供了最低的热阻。我们报告说,由于非零热边界电阻和GaN基高电子迁移率晶体管中的局部加热,在热源和衬底之间存在最佳隔离。对于在高导热衬底(即金刚石)上的高功率(即8 W)散热,热源与衬底之间的最佳分隔变得亚微米厚(即500nm),从而将热点温度降低了50℃与传统的微米级厚外壳(即4μm)相比。这归因于热源附近GaN中的导热系数下降。通过我们的进一步方法,改善GaN和金刚石之间的TBR可以提高温度降低。总体而言,我们提供了基于GaN的器件的热管理设计指南。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第15期|151904.1-151904.4|共4页
  • 作者

    K. Park; C. Bayram;

  • 作者单位

    Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;

    Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA,Innovative COmpound semiconductoR (ICOR) Laboratory, Urbana, Illinois 61801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号