首页> 外文期刊>Applied Physics Letters >Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca_(0.9)La_(0.1)FeAs_2
【24h】

Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca_(0.9)La_(0.1)FeAs_2

机译:各向异性狄拉克锥在112结构铁基超导体Ca_(0.9)La_(0.1)FeAs_2的能带色散中的观察

获取原文
获取原文并翻译 | 示例
           

摘要

CaFeAs_2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs_2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S_4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological non-trivial edge states. The slightly electron doped CaFeAs_2 would provide us a unique opportunity to realize and explore Majorana fermion physics.
机译:CaFeAs_2是最近发现的112型铁基超导体的母体化合物。预计它是一种交错插入化合物,它自然地集成了量子自旋霍尔绝缘层和超导层,是实现马约拉那模式的理想系统。我们对轻度电子掺杂的CaFeAs_2进行了系统的角度分辨光发射光谱和第一性原理计算研究。我们发现112型铁基超导体的之字形As链在低能电子结构中起着相当重要的作用,从而产生了像狄拉克锥一样的特征能带扩散作为预测。我们的实验结果进一步证实,这些狄拉克锥仅存在于布里渊区的X点附近,而不存在于Y点附近,从而打破了铁位置的S_4对称性。我们的发现为基于112型铁基超导体可能具有拓扑非平凡边缘态的理论预测提供了有力的支持。轻度掺杂的CaFeAs_2将为我们提供实现和探索马约拉纳费米子物理学的独特机会。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第4期|042602.1-042602.4|共4页
  • 作者单位

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

    Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

    Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China;

    Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China,State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China,State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, China,CAS-Shanghai Science Research Center, Shanghai 201203, China;

    Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China,CAS-Shanghai Science Research Center, Shanghai 201203, China,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China;

    State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号