首页> 外文期刊>Applied Physics Letters >A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments
【24h】

A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments

机译:利用微米和纳米压痕实验研究FeCrMoVC铸造合金中单个奥氏体枝晶的微观和纳米级变形行为

获取原文
获取原文并翻译 | 示例
           

摘要

Micro- and nanoindentation experiments were conducted to investigate the deformation mechanisms in a Fe79.4Cr13Mo5V1C1.6 (wt. %) cast alloy. This alloy consists of an as cast microstructure mainly composed of austenite, martensite, and a complex carbide network. During microhardness testing, metastable austenite transforms partially into martensite confirmed by electron backscatter diffraction. For nanoindentation tests, two different indenter geometries were applied (Berkovich and cube corner type). Load-displacement curves of nanoindentation in austenitic dendrites depicted pop-ins after transition into plastic deformation for both nanoindenters. Characterizations of the region beneath a nanoindent by transmission electron microscopy revealed a martensitic transformation as an activated deformation mechanism and suggest a correlation with the pop-in phenomena of the load-displacement curves. Furthermore, due to an inhomogeneous chemical composition within the austenitic dendrites, more stabilized regions deform by mechanical twinning. This additional deformation mechanism was only observed for the cube corner indenter with the sharper geometry since higher shear stresses are induced beneath the contact area.
机译:进行了微观和纳米压痕实验,以研究Fe79.4Cr13Mo5V1C1.6(wt。%)铸造合金的变形机理。该合金由主要由奥氏体,马氏体和复杂的碳化物网络组成的铸态组织组成。在显微硬度测试过程中,通过电子反向散射衍射证实,亚稳态奥氏体部分转变为马氏体。对于纳米压痕测试,应用了两种不同的压头几何形状(Berkovich和立方角型)。奥氏体枝晶中纳米压痕的载荷-位移曲线描绘了两个纳米压痕转变为塑性变形后的弹跳。通过透射电子显微镜对纳米压痕下方区域的表征表明,马氏体转变是一种激活的变形机制,并暗示了与载荷-位移曲线的弹起现象的相关性。此外,由于奥氏体枝晶内的化学组成不均匀,因此更稳定的区域会通过机械孪晶变形。仅在具有更尖锐几何形状的立方角压头中才观察到这种额外的变形机制,因为在接触区域下方会产生更高的剪切应力。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第14期|143103.1-143103.5|共5页
  • 作者单位

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany;

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany;

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany;

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany;

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany,TU Dresden, Institute of Materials Science, Helmholtzstrasse 7, D-01069 Dresden, Germany,Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (OEAW) and Department Materials Physics, Montanuniversitaet Leoben, Jahnstrasse 12, A-8700 Leoben, Austria;

    Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号