首页> 外文期刊>Applied Physics Letters >Coupled magnetic and elastic dynamics generated by a shear wave propagating in ferromagnetic heterostructure
【24h】

Coupled magnetic and elastic dynamics generated by a shear wave propagating in ferromagnetic heterostructure

机译:在铁磁异质结构中传播的剪切波产生的耦合的磁动力学和弹性动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Using advanced micromagnetic simulations, we describe the coupled elastic and magnetic dynamics induced in ferromagnetormal metal bilayers by shear waves generated by the attached piezoelectric transducer. Our approach is based on the numerical solution of a system of differential equations, which comprises the Landau-Lifshitz-Gilbert equation and the elastodynamic equation of motion, both allowing for the magnetoelastic coupling between spins and lattice strains. The simulations have been performed for heterostructures involving a Fe_(81)Ga_(19) layer with the thickness ranging from 100 to 892 nm and a few-micrometer-thick film of a normal metal (Au). We find that the traveling shear wave induces inhomogeneous magnetic dynamics in the ferromagnetic layer, which generally has an intermediate character between coherent magnetization precession and the pure spin wave. Owing to the magnetoelastic feedback, the magnetization precession generates two additional elastic waves (shear and longitudinal), which propagate into the normal metal. Despite such complex elastic dynamics and reflections of elastic waves at the Fe_(81)Ga_(19)|Au interface, periodic magnetization precession with the excitation frequency settles in the steady-state regime. The results obtained for the magnetization dynamics at the Fe_(81)Ga_(19)|Au interface are used to evaluate the spin current pumped into the Au layer and the accompanying charge current caused by the inverse spin Hall effect. The calculations show that the dc component of the charge current is high enough to be detected experimentally even at small strains ~10~(-4) generated by the piezoelectric transducer.
机译:使用先进的微磁模拟,我们描述了由附加的压电换能器产生的剪切波在铁磁体/普通金属双层中感应的耦合的弹性和磁动力学。我们的方法基于微分方程组的数值解,该方程组包括Landau-Lifshitz-Gilbert方程和运动的弹性动力学方程,两者都允许自旋和晶格应变之间的磁弹性耦合。已经对涉及Fe_(81)Ga_(19)层的异质结构进行了仿真,该层的厚度在100到892 nm之间,并且具有几微米厚的普通金属(Au)膜。我们发现行进的剪切波在铁磁层中引起不均匀的磁动力学,这通常在相干磁化进动与纯自旋波之间具有中间特性。由于磁弹性反馈,磁化进动产生了两个附加的弹性波(剪切波和纵向波),并传播到普通金属中。尽管在Fe_(81)Ga_(19)| Au界面处存在如此复杂的弹性动力学和弹性波反射,但具有激励频率的周期性磁化进动仍处于稳态状态。在Fe_(81)Ga_(19)| Au界面上获得的磁化动力学结果用于评估泵入Au层的自旋电流以及由逆自旋霍尔效应引起的伴随电荷电流。计算表明,即使在压电换能器产生的小应变〜10〜(-4)时,充电电流的直流分量也足够高,可以通过实验检测到。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第22期|222403.1-222403.5|共5页
  • 作者

    A. V. Azovtsev; N. A. Pertsev;

  • 作者单位

    Ioffe Institute, St. Petersburg 194021, Russia;

    Ioffe Institute, St. Petersburg 194021, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号