首页> 外文期刊>Applied Physics Letters >Insight into the split and asymmetry of charge distribution in biased M-structure superlattice
【24h】

Insight into the split and asymmetry of charge distribution in biased M-structure superlattice

机译:洞悉M结构超晶格中电荷分布的分裂和不对称性

获取原文
获取原文并翻译 | 示例
           

摘要

The charge distribution in real space of an insertion variant based on an InAs/GaSb superlattice for an infrared detector is illustrated by in situ electron microscopy. The localization split of positive charge can be directly observed in the InAs/GaSb/AlSb/GaSb superlattice (M-structure) rather than in the InAs/GaSb superlattice. With the applied bias increasing from 0 to 4.5 V, the double peaks of positive charge density become asymmetrical gradually, with the peak integral ratio ranging from 1.13 to 2.54. Simultaneously, the negative charges move along the direction of the negative electric field. Without inserting the AlSb layer, the charge inversion occurs in both the hole wells and the electron wells of the InAs/GaSb superlattice under high bias. Such a discrepancy between the M-structure superlattice and the traditional superlattice suggests an effective reduction of tunneling probability of the M-structure design. Our result is of great help to understand the carrier immigration mechanism of the superlattice-based infrared detector.
机译:通过原位电子显微镜显示了基于InAs / GaSb超晶格的红外检测器插入变体在真实空间中的电荷分布。可以在InAs / GaSb / AlSb / GaSb超晶格(M结构)中而不是InAs / GaSb超晶格中直接观察到正电荷的局部分裂。随着施加的偏压从0 V增加到4.5 V,正电荷密度的双峰逐渐变得不对称,峰积分比在1.13至2.54范围内。同时,负电荷沿着负电场的方向移动。在不插入AlSb层的情况下,在高偏压下,InAs / GaSb超晶格的空穴阱和电子阱均发生电荷反转。 M结构超晶格与传统超晶格之间的这种差异表明,有效降低了M结构设计的隧穿概率。我们的结果对理解基于超晶格的红外探测器的载流子迁移机理有很大的帮助。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|053503.1-053503.4|共4页
  • 作者单位

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China;

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China;

    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China;

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

    Laboratory of Advanced Materials, Department of Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号