首页> 外文期刊>Applied Physics Letters >Effects of adhesion layer on Ag nanorod growth mode and morphology using glancing angle physical vapor deposition
【24h】

Effects of adhesion layer on Ag nanorod growth mode and morphology using glancing angle physical vapor deposition

机译:掠射角物理气相沉积法附着层对Ag纳米棒生长模式和形貌的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This letter reports on the transition from a non-wetting to an effectively wetting growth mode of silver (Ag) nanorods when an adhesion layer is used during glancing angle physical vapor deposition growth. When deposited onto a silicon substrate without an adhesion layer, Ag nanorods grow from partially interconnected non-wetting islands with diameters of ~100 nm, although many connect with their neighbors due to small rod-to-rod spacing. When a 1 nm thick Cr adhesion layer is used, which is shown not to completely coat the substrate, the growth mode becomes effectively wetting through the coalescence of closely spaced nuclei, and both Ag nanorod diameter and spacing increase. Alternatively, when a thicker 10 nm Cr adhesion layer is used, the growth mode becomes mixed, as both small effective wetting regions and film gaps exist. For the cases of no adhesion layer and 1 nm Cr adhesion layer, the nanorods are oriented at ~23° from the substrate but lay down onto the substrate when a 10 nm thick Cr adhesion layer is used. Thin film adhesion tests demonstrate that both 1 nm and 10 nm Cr adhesion layers offer an enhanced performance over no adhesion layer or a glancing angle adhesion layer.
机译:这封信报道了在掠射角物理气相沉积生长过程中使用粘合层时,银(Ag)纳米棒从非润湿生长方式转变为有效润湿生长方式的过程。当将Ag纳米棒沉积到没有粘附层的硅基板上时,它会从直径约100 nm的部分互连的非润湿岛中生长出来,尽管由于杆间间距小,许多与其相邻的岛相连。当使用厚度为1 nm的Cr粘附层时,该粘附层无法完全覆盖基板,生长方式通过紧密间隔的原子核的聚结而有效地润湿,并且Ag纳米棒的直径和间距都会增加。可替代地,当使用较厚的10nm Cr粘附层时,由于小的有效润湿区域和膜间隙均存在,因此生长模式变得混合。对于没有粘附层和1 nm Cr粘附层的情况,当使用10 nm厚的Cr粘附层时,纳米棒相对于基材的位置约为23°,但会放到基材上。薄膜附着力测试表明1 nm和10 nm的Cr附着力层均比没有附着力层或掠角附着力层的性能更高。

著录项

  • 来源
    《Applied Physics Letters》 |2017年第5期|053109.1-053109.5|共5页
  • 作者单位

    Department of Chemistry, University of North Florida, Jacksonville, Florida 32224, USA;

    Mechanical Engineering Department, University of North Florida, Jacksonville, Florida 32224, USA;

    Department of Chemistry, University of North Florida, Jacksonville, Florida 32224, USA;

    Department of Chemistry, University of North Florida, Jacksonville, Florida 32224, USA;

    Mechanical Engineering Department, University of North Florida, Jacksonville, Florida 32224, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号