首页> 外文期刊>Applied Physics Letters >Giant tensile superelasticity originating from two-step phase transformation in a Ni-Mn-Sn-Fe magnetic microwire
【24h】

Giant tensile superelasticity originating from two-step phase transformation in a Ni-Mn-Sn-Fe magnetic microwire

机译:Ni-Mn-Sn-Fe磁性微丝中的两步相变产生的巨大拉伸超弹性

获取原文
获取原文并翻译 | 示例
       

摘要

Large recoverable strain of more than several percent arising from superelasticity in shape memory alloys is important for actuators, sensors, and solid-state refrigeration. Here, we report a Ni50.0Mn31.4Sn9.6Fe9.0 magnetic microwire showing a giant tensile recoverable strain of about 20.0% along the 001 direction of austenite at 263 K. The recoverable strain represents the largest value reported heretofore in Ni-Mn-based shape memory alloys and is also larger than that of the Ni-Ti wire available for practical applications at present. This giant tensile superelasticity is associated with the stress-induced two-step transformation, and the transformation sequence could be L2(1) (austenite) - 6M (six-layered modulated martensite) - NM (non-modulated martensite), as suggested by the temperature-dependent in-situ synchrotron high-energy X-ray diffraction experiments and the transformation strain calculation based on the crystallographic theory of martensitic transformation. In addition, this Ni50.0Mn31.4Sn9.0 microwire shows a transformation entropy change Delta S-tr of 22.9 J kg(-1) K-1 and has the advantages of easy fabrication and low cost, promising for miniature sensor, actuator, and solid-state refrigeration applications. Published by MP Publishing.
机译:形状记忆合金中的超弹性会产生超过百分之几的较大可恢复应变,这对于执行器,传感器和固态制冷至关重要。在这里,我们报道了一条Ni50.0Mn31.4Sn9.6Fe9.0磁性微丝,它在263 K处沿奥氏体的<001>方向显示出约20.0%的巨大拉伸可恢复应变。该可恢复应变代表了迄今为止在Ni-中所报告的最大值。 Mn基形状记忆合金,并且比目前可用于实际应用的Ni-Ti线大。这种巨大的拉伸超弹性与应力引起的两步转变有关,转变顺序可以是L2(1)(奥氏体)-> 6M(六层调制马氏体)-> NM(非调制马氏体),如由温度依赖性原位同步加速器高能X射线衍射实验和基于马氏体相变晶体学理论的相变应变计算建议。此外,这种Ni50.0Mn31.4Sn9.0微丝的转化熵变化Delta S-tr为22.9 J kg(-1)K-1,具有制造容易,成本低的优点,有望用于微型传感器,执行器,和固态制冷应用。由MP Publishing发布。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第11期|112402.1-112402.5|共5页
  • 作者单位

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Liaoning, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:13:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号