首页> 外文期刊>Applied Physics Letters >Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)
【24h】

Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)

机译:通过Au(788)的无蚀刻剂转移制造的石墨烯纳米带场效应晶体管

获取原文
获取原文并翻译 | 示例
           

摘要

We report etching-free and iodine-free transfer of highly aligned array of armchair-edge graphene nanoribbons (ACGNRs) and their field-effect transistor (FET) characteristics. They were prepared by on-surface polymerization on Au(788) templates. The ACGNRs were mechanically delaminated and transferred onto insulating substrates with the aid of a nano-porous support layer composed of hydrogen silsesquioxane (HSQ). The key process in the mechanical delamination is the intercalation of octanethiol self-assembled monolayers (SAMs), which penetrate the HSQ layer and intercalate between the ACGNRs and Au(788). After the transfer, the octanethiol SAMs were removed with Piranha solution, enabling the reuse of the Au single crystals. The FETs fabricated with the transferred ACGNR array showed ambipolar behavior when the channel length was as long as 60 ran. Quasi-one-dimensional conductivity was observed, which implies a good alignment of GNRs after the transfer. In contrast, short-channel ACGNR FETs (channel length ~20 nm) suffer from a geometry-dependent short-channel effect. This effect is more severe in the FETs with ACGNRs parallel to the channel, which is an ideal geometry, than in ones perpendicular to the channel. Since the I_D-V_D curve is well fitted by the power-law model, the short-channel effect likely stems from the space-charge limited current effect, while the wide charge-transfer region in the GNR channel can be another possible cause for the short-channel effect. These results provide us with important insights into the designing short-channel GNR-FETs with improved performance.
机译:我们报告扶手椅边缘石墨烯纳米带(ACGNRs)及其场效应晶体管(FET)特性的高度对齐阵列的无蚀刻和无碘转移。它们是通过在Au(788)模板上进行表面聚合制备的。将ACGNRs机械分层,并借助由倍半硅氧烷氢(HSQ)组成的纳米多孔支撑层将其转移到绝缘基板上。机械分层的关键过程是插入辛硫醇自组装单层(SAM),该单层穿透HSQ层并插入ACGNR和Au(788)之间。转移后,用Piranha溶液除去辛硫醇SAM,从而可以重新使用Au单晶。当通道长度长达60 ran时,用转移的ACGNR阵列制造的FET表现出双极性行为。观察到准一维电导率,这意味着转移后GNR的良好排列。相反,短通道ACGNR FET(通道长度〜20 nm)受几何相关的短通道效应的影响。与具有垂直于沟道的ACGNR平行于沟道(这是理想的几何形状)的FET相比,这种效应更为严重。由于幂律模型很好地拟合了I_D-V_D曲线,因此短通道效应很可能源于空间电荷限制电流效应,而GNR通道中较宽的电荷转移区域可能是引起该效应的另一个可能原因。短通道效应。这些结果为我们提供了设计具有改进性能的短通道GNR-FET的重要见识。

著录项

  • 来源
    《Applied Physics Letters》 |2018年第2期|021602.1-021602.5|共5页
  • 作者单位

    NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan;

    NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan;

    NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan,Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanaa, Hyogo 669-1337, Japan;

    NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号