...
首页> 外文期刊>Applied Microbiology and Biotechnology >Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions
【24h】

Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions

机译:氨气氧化剂限制氧气的自养硝化/反硝化作用使向上运动趋向更有利的条件

获取原文
获取原文并翻译 | 示例
           

摘要

The hypothesis is formulated that in case of oxygen limitation in the sediment, nitrifiers switch from nitrification to oxygen-limited autotrophic nitrification-denitrification (OLAND) in order to survive and maintain activity. During OLAND, ammonium is oxidised using nitrite as e-acceptor to form dinitrogen gas. As an additional advantage they benefit from the gaseous N2 formed as a means of transport. In this way, the nitrifiers can move out of the sediment and rise through the water column towards more favourable conditions. At the surface, the bacteria could take up oxygen, and recommence nitrification. In order to test this hypothesis, nitrifying sediment with an overlaying water column was simulated in lab-scale columns. Nitrogen transformations and material transport through the water column were followed after addition of different forms of nitrogen under oxygen-limited conditions. 15N-labelling experiments showed a large contribution of OLAND to the observed nitrogen deficits. Nitrifier enumerations, fluorescent in situ hybridisation and 16S rRNA gene analysis revealed increased populations of ammonia oxidising nitrifiers in the upper water layers. The results presented support the proposed hypothesis of transport using OLAND. Nitrifying activity in the sediment immediately recovered almost completely from prolonged oxygen-limited incubation when oxygen concentrations were increased.
机译:提出这样的假设,即在沉积物中氧气受限的情况下,硝化器会从硝化作用转换为氧气受限的自养硝化-硝化作用(OLAND),以便生存并保持活性。在OLAND期间,使用亚硝酸盐作为电子受体将铵氧化形成二氮气。作为另一个优势,它们得益于作为运输手段而形成的气态N2 。这样,硝化器可以从沉积物中移出,并通过水柱上升至更有利的条件。在表面,细菌可能吸收氧气,并开始硝化作用。为了检验该假设,在实验室规模的色谱柱中模拟了带有覆盖水柱的硝化沉积物。在氧气受限的条件下添加不同形式的氮气后,进行氮转化和物料通过水柱的运输。 15 N标记实验表明OLAND对观察到的氮缺乏有很大贡献。硝化器计数,荧光原位杂交和16S rRNA基因分析表明,上部水层中氨氧化硝化器的数量增加。提出的结果支持使用OLAND进行运输的假设。当氧气浓度增加时,长时间的限氧培养几乎可以完全恢复沉淀物中的硝化活性。

著录项

  • 来源
    《Applied Microbiology and Biotechnology》 |2002年第5期|557-566|共10页
  • 作者单位

    Laboratory of Microbial Ecology and Technology Ghent University Coupure Links 653 9000 Ghent Belgium;

    Laboratory of Applied Physicochemistry Ghent University Ghent Belgium;

    Laboratory of Microbial Ecology and Technology Ghent University Coupure Links 653 9000 Ghent Belgium;

    Laboratory of Microbial Ecology and Technology Ghent University Coupure Links 653 9000 Ghent Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号