首页> 外文期刊>Applied Mathematical Modelling >Advanced continuum modelling of gas-particle flows beyond the hydrodynamic limit
【24h】

Advanced continuum modelling of gas-particle flows beyond the hydrodynamic limit

机译:超出流体力学极限的气体颗粒流的高级连续模型

获取原文
获取原文并翻译 | 示例
           

摘要

The accurate prediction of dilute gas-particle flows using Euler-Euler models is challenging because particle-particle collisions are usually not dominant in such flows. In other words, in dilute flows the particle Knudsen number is not small enough to justify a Chapman-Enskog expansion about the collision-dominated near-equilibrium limit. Moreover, due to the fluid drag and inelastic collisions, the granular temperature in gas-particle flows is often small compared to the mean particle kinetic energy, implying that the particle-phase Mach number can be very large. In analogy to rarefied gas flows, it is thus not surprising that two-fluid models fail for gas-particle flows with moderate Knudsen and Mach numbers. In this work, a third-order quadrature-based moment method, valid for arbitrary Knudsen number, coupled with a fluid solver has been applied to simulate dilute gas-particle flow in a vertical channel with particle-phase volume fractions between 0.0001 and 0.01. In order to isolate the instabilities that arise due to fluid-particle coupling, a fluid mass flow rate that ensures that turbulence would not develop in a single phase flow (Re= 1380) is employed. Results are compared with the predictions of a two-fluid model with standard kinetic theory based closures for the particle phase. The effect of the particle-phase volume fraction on flow instabilities leading to particle segregation is investigated, and differences with respect to the two-fluid model predictions are examined. The influence of the discretization on the solution of both models is investigated using three different grid resolutions. Radial profiles of phase velocities and particle concentration are shown for the case with an average particle volume fraction of 0.01, showing the flow is in the core-annular regime.
机译:使用Euler-Euler模型准确预测稀薄气体颗粒的流动是有挑战性的,因为在这种流动中颗粒-颗粒碰撞通常并不占主导地位。换句话说,在稀流中,粒子克努森数不小到足以证明关于碰撞支配的近平衡极限的查普曼-恩斯科格展开是正确的。此外,由于流体阻力和非弹性碰撞,与平均颗粒动能相比,气体颗粒流中的颗粒温度通常较小,这意味着颗粒相马赫数可能非常大。与稀薄气体流类似,因此,对于中等克努德数和马赫数的气体颗粒流,两种流体模型失效就不足为奇了。在这项工作中,适用于任意Knudsen数的三阶基于矩的矩量法,结合流体求解器,已被用于模拟垂直相流中的气态稀流,颗粒相体积分数在0.0001和0.01之间。为了隔离由于流体-颗粒耦合而引起的不稳定性,采用了确保在单相流中不会产生湍流的流体质量流速(Re = 1380)。将结果与基于流体动力学的基于标准动力学理论的双流体模型的预测结果进行比较。研究了颗粒相体积分数对导致颗粒偏析的流动不稳定性的影响,并检验了关于两种流体模型预测的差异。使用三种不同的网格分辨率,研究了离散化对两个模型求解的影响。对于平均颗粒体积分数为0.01的情况,显示了相速度和颗粒浓度的径向分布,表明流动处于核-环形状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号