首页> 外文期刊>Applied Energy >Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery
【24h】

Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery

机译:固体氧化物燃料电池(SOFC)余热回收的联合循环热电联产双回路有机朗肯循环(ORC)系统的工作流体选择和热经济性优化

获取原文
获取原文并翻译 | 示例
           

摘要

A novel combined-cycle system is proposed for the cogeneration of electricity and cooling, in which a dual-loop organic Rankine cycle (ORC) engine is used for waste-heat recovery from a solid oxide fuel cell system equipped with a gas turbine (SOFC-GT). Electricity is generated by the SOFC, its associated gas turbine, the two ORC turbines and a liquefied natural gas (LNG) turbine; the LNG supply to the fuel cell is also used as the heat sink to the ORC engines and as a cooling medium for domestic applications. The performance of the system with 20 different combinations of ORC working fluids is investigated by multi-objective optimisation of its capital cost rate and exergy efficiency, using an integration of a genetic algorithm and a neural network. The combination of R601 (top cycle) and Ethane (bottom cycle) is proposed for the dual-loop ORC system, due to the satisfaction of the optimisation goals, i.e., an optimal trade-off between efficiency and cost. With these working fluids, the overall system achieves an exergy efficiency of 51.6%, a total electrical power generation of 1040 kW, with the ORC waste-heat recovery system supplying 20.7% of this power, and a cooling capacity of 567 kW. In addition, an economic analysis of the proposed SOFC-GT-ORC system shows that the cost of production of an electrical unit amounts to $33.2 per MWh, which is 12.9% and 73.9% lower than the levelized cost of electricity of separate SOFC-GT and SOFC systems, respectively. Exergy flow diagrams are used to determine the flow rate of the exergy and the value of exergy destruction in each component. In the waste-heat recovery system, exergy destruction mainly occurs within the heat exchangers, the highest of which is in the LNG cooling unit followed by the LNG vaporiser and the evaporator of the bottom-cycle ORC system, highlighting the importance of these components' design in maximising the performance of the overall system.
机译:提出了一种用于热电联产的新型联合循环系统,其中双回路有机朗肯循环(ORC)发动机用于从配备有燃气轮机(SOFC)的固体氧化物燃料电池系统中回收余热-GT)。电力由SOFC,与其相关的燃气轮机,两个ORC涡轮机和液化天然气(LNG)涡轮机产生;燃料电池的液化天然气供应也用作ORC发动机的散热器和家用应用的冷却介质。通过遗传算法和神经网络的集成,通过对其资本成本率和火用效率进行多目标优化,研究了具有20种不同ORC工作流体组合的系统的性能。由于满足了优化目标,即效率和成本之间的最佳折衷,提出了双循环ORC系统的R601(顶部循环)和Ethane(底部循环)的组合。使用这些工作流体,整个系统的火用效率达到了51.6%,总发电量为1040 kW,而ORC废热回收系统提供了20.7%的电力,冷却能力为567 kW。此外,对拟议的SOFC-GT-ORC系统的经济分析表明,电气装置的生产成本为每兆瓦时33.2美元,分别比单独的SOFC-GT的平均电力成本低12.9%和73.9%和SOFC系统。火用流程图用于确定火用流量以及每个组件中的火用破坏值。在废热回收系统中,(火用)破坏主要发生在热交换器内,其中最高的是在LNG冷却单元中,其次是LNG蒸发器和底循环ORC系统的蒸发器,这突出了这些组件的重要性。在最大化整个系统性能方面进行设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号