...
首页> 外文期刊>Applied Energy >A numerical modeling study on the influence of porosity changes during thermochemical heat storage
【24h】

A numerical modeling study on the influence of porosity changes during thermochemical heat storage

机译:热化学储热过程中孔隙度变化影响的数值模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

Thermochemical energy storage can achieve high storage densities as well as nearly loss-free long-term storage, while offering charge or discharge on demand. Suitable materials consist of solid and gaseous components, where the dosage of reacting gas in the reactor can easily be regulated to control the reaction. Most materials currently investigated for thermochemical heat storage feature a volume change of the solid reactive material during the reaction. To study this effect and its influence on the reaction performance, we present a numerical model that can capture the changing hydraulic properties of the solid reactor fill, represented by the parameters porosity and permeability. This model is applied to a quasi-1D setup for the reaction system CaO/Ca(OH)(2).This study shows that both porosity alteration and induced permeability change have a significant effect on the performance of the reaction. Solid volume changes are about 50% with initial porosities at 0.6 for charge and 0.8 for discharge. Depending on the porosity-permeability relationship, the corresponding changes in permeability are about one to two orders of magnitude. The porosity influences the shape of the reaction front and the amount of released (or consumed, depending on charge or discharge) heat. The permeability of the solid material strongly affects the velocity of the reaction front and thus the time necessary for complete conversion. We conclude that the hydraulic properties of a specific reaction system have to be well understood to (i) include the relevant processes in the conceptual model, and thus (ii) allow for more reliable predictions on the performance of the reaction.
机译:热化学能存储可以实现高存储密度以及几乎无损的长期存储,同时按需提供充电或放电。合适的材料由固体和气体组分组成,其中可以容易地调节反应器中反应气体的剂量以控制反应。当前研究用于热化学蓄热的大多数材料的特征在于反应期间固体反应性材料的体积变化。为了研究这种影响及其对反应性能的影响,我们提出了一个数值模型,该模型可以捕获固体反应堆填充物不断变化的水力特性,用孔隙率和渗透率参数表示。该模型应用于反应系统CaO / Ca(OH)(2)的准一维设置,该研究表明孔隙率变化和诱导的渗透率变化都对反应的性能有重要影响。固体体积的变化约为50%,初始孔隙率为0.6(装料)和0.8(排出)。根据孔隙率-渗透率关系,渗透率的相应变化约为一到两个数量级。孔隙度影响反应前沿的形状和释放的(或消耗的,取决于充电或放电)热量。固体材料的渗透性强烈影响反应前沿的速度,从而影响完全转化所需的时间。我们得出结论,必须很好地理解特定反应系统的水力特性,以便(i)在概念模型中包括相关过程,因此(ii)可以对反应的性能进行更可靠的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号