...
首页> 外文期刊>Applied Energy >Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm
【24h】

Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm

机译:多目标遗传算法在发动机相关工况下基于甲烷的混合燃料数值优化

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this work is to examine in a systematic way, how conflicting requirements such as maximum ignition delay time and laminar flame speed can be met by adding gaseous components to methane in order to obtain the optimal fuel blend under engine-relevant conditions. Low-dimensional models are coupled with a multi-objective optimization algorithm in order to compute optimal methane/hydrogen, methane/syngas and methane/propane/syngas blend compositions that maximize simultaneously the ignition delay time, the laminar flame speed and the Wobbe number. The non-dominated sorting genetic algorithm (NSGA-II) is used to generate a set of Pareto solutions, and the best compromise solutions are then determined by the technique for order preference by similarity to ideal solution (TOPSIS). It was found that the GRI-Mech 3.0 mechanism could not accurately predict ignition properties of methane-based fuel blends under engine-relevant conditions. The optimization results revealed that initial conditions have a significant effect on the optimal fuel blend composition. For methane/hydrogen and methane/syngas blends, pure methane was the optimal fuel at high temperatures and low equivalence ratios, while high hydrogen contents were beneficial at lower temperatures. When the ignition delay time is of higher importance, the optimal composition shifted towards higher carbon monoxide contents. Blends with higher hydrogen and syngas contents resulted in reduced ignition delay times and higher laminar flame speeds. Regarding the methane/propane/syngas blend, the presence of propane in the optimal blend was found to be more favorable than hydrogen and carbon monoxide to satisfy the objectives.
机译:这项工作的目的是系统地研究如何通过向甲烷中添加气态组分来满足矛盾的要求,例如最大点火延迟时间和层流火焰速度,以便在与发动机相关的条件下获得最佳的燃料混合物。低维模型与多目标优化算法相结合,以计算最佳的甲烷/氢气,甲烷/合成气以及甲烷/丙烷/合成气混合成分,同时使点火延迟时间,层流火焰速度和沃伯数最大化。使用非支配排序遗传算法(NSGA-II)生成一组Pareto解,然后通过与理想解(TOPSIS)相似的技术通过优先顺序确定最佳折衷解。发现在与发动机相关的条件下,GRI-Mech 3.0机制无法准确预测甲烷基燃料混合物的点火性能。优化结果表明,初始条件对最佳燃料共混物成分有重大影响。对于甲烷/氢气和甲烷/合成气混合物,纯甲烷是高温和低当量比的最佳燃料,而氢气含量高则在较低温度下是有益的。当点火延迟时间具有更高的重要性时,最佳组成会向更高的一氧化碳含量转移。氢和合成气含量较高的混合物可缩短点火延迟时间,并提高层流火焰速度。关于甲烷/丙烷/合成气混合物,发现在最佳混合物中丙烷的存在比满足目标的氢气和一氧化碳更有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号