首页> 外文期刊>Algorithmica >Learning Privately with Labeled and Unlabeled Examples
【24h】

Learning Privately with Labeled and Unlabeled Examples

机译:私下学习标记和未标记的例子

获取原文
获取原文并翻译 | 示例
           

摘要

Aprivate learneris an algorithm that given a sample of labeled individual examples outputs a generalizing hypothesis while preserving the privacy of each individual. In 2008, Kasiviswanathan et al. (FOCS 2008) gave a generic construction of private learners, in which the sample complexity is (generally) higher than what is needed for non-private learners. This gap in the sample complexity was then further studied in several followup papers, showing that (at least in some cases) this gap is unavoidable. Moreover, those papers considered ways to overcome the gap, by relaxing either the privacy or the learning guarantees of the learner. We suggest an alternative approach, inspired by the (non-private) models ofsemi-supervised learningandactive-learning, where the focus is on the sample complexity oflabeledexamples whereasunlabeledexamples are of a significantly lower cost. We consider private semi-supervised learners that operate on a random sample, where only a (hopefully small) portion of this sample is labeled. The learners have no control over which of the sample elements are labeled. Our main result is that the labeled sample complexity of private learners is characterized by the VC dimension. We present two generic constructions of private semi-supervised learners. The first construction is of learners where the labeled sample complexity is proportional to the VC dimension of the concept class, however, the unlabeled sample complexity of the algorithm is as big as the representation length of domain elements. Our second construction presents a new technique for decreasing the labeled sample complexity of a given private learner, while roughly maintaining its unlabeled sample complexity. In addition, we show that in some settings the labeled sample complexity does not depend on the privacy parameters of the learner.
机译:用于鉴于标记的单个示例的样本的算法使得算法输出概括假设,同时保留每个人的隐私。 2008年,Kasiviswanathan等人。 (Focs 2008)给出了私人学习者的通用建设,其中样本复杂性(一般)高于非私人学习者所需的东西。然后在几篇后续纸中进一步研究样品复杂性的这种间隙,显示(至少在某些情况下)这种间隙是不可避免的。此外,这些论文通过放宽了学习者的隐私或学习保障来考虑克服差距的方法。我们建议一种替代方法,受到了(非私人)的大学监督学习和活动学习的替代方法,其中重点是标签的样本复杂性,而Isunlabeledexamples的成本明显降低。我们考虑在随机样本上运行的私人半监督学习者,其中该样本的仅A(希望小)部分标记。学习者无法控制标记哪些样本元素。我们的主要结果是,私人学习者的标签样本复杂性的特点是VC维度。我们提出了两个私人半监督学习者的一般建设。第一施工是学习者,其中标记的样本复杂性与概念类的VC维度成比例,然而,算法的未标记的样本复杂度与域元素的表示长度一样大。我们的第二座建筑提供了一种新的技术,用于降低给定私人学习者的标记样本复杂性,同时大致保持其未标记的样本复杂性。此外,我们表明,在某些设置中,标记的样本复杂性不依赖于学习者的隐私参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号