...
首页> 外文期刊>AIAA Journal >Numerical Simulation on Plasma Circulation Control Airfoil
【24h】

Numerical Simulation on Plasma Circulation Control Airfoil

机译:等离子循环控制翼型的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A novel plasma circulation control technique is proposed to overcome the disadvantage of conventional jetncirculation control about the requirement for air source.By employing the plasma actuator on the trailing edge of thenairfoil, the plasma-inducedwall jet is tangential to the airfoil surface and served asCoanda blowing jet,whichmakesnthe trailing-edge detachment pointmigrate to the lower surface of the airfoil. In thisway, the circulation and the lift ofnairfoil are directly controlled by the plasma actuator. The effectiveness of plasma circulation control on thenaerodynamic characteristics improvement of NCCR 1510-7067N airfoil is demonstrated by solving the Reynolds-naveraged Navier–Stokes equations. The plasma actuator is modeled with a phenomenological model by adding thenbody force source terms to the governing equations. The results indicate that the efficiency of plasma circulationncontrol for lift augmentation is superior to that of conventional jet circulation controlmethod. The lift augmentationnefficiency after the location optimization reaches u0001CL=Cu0001 u0001 134:86, which is much higher than the maximum liftnaugmentation efficiency 80 for conventional jet circulation control. The optimal location for the plasma actuator innplasma circulation control is downstream of the boundary-layer separation point with proper distance, where thenplasma actuator makes the separated shear layer reattach to the airfoil surface and delays the trailing-edgenstagnation by Coanda effect.
机译:提出了一种新颖的等离子循环控制技术,克服了传统的喷气循环控制对空气源的需求。通过在等离子机翼的后缘采用等离子致动器,等离子诱导的壁射流与机翼表面相切并用作柯恩达吹气。射流,使后缘分离点迁移到机翼的下表面。这样,翼型的循环和升程直接由等离子致动器控制。通过求解雷诺平均的Navier-Stokes方程,证明了等离子体循环控制对改善NCCR 1510-7067N翼型热力学特性的有效性。通过将体力源项添加到控制方程中,用现象学模型对等离子体执行器进行建模。结果表明,用于提升的血浆循环控制的效率优于常规射流循环控制方法。位置优化后的升力增强效率达到u0001CL = Cu0001 u0001 134:86,远高于常规射流循环控制的最大升力增强效率80。等离子体致动器进行等离子体循环控制的最佳位置是在边界层分离点的下游,并保持适当的距离,然后等离子体致动器使分离的剪切层重新附着在机翼表面,并通过柯恩达效应延迟尾随的滞流。

著录项

  • 来源
    《AIAA Journal》 |2010年第10期|p.2213-2226|共14页
  • 作者单位

    Beijing University of Aeronautics and Astronautics, 100191 Beijing, People’s Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号