...
首页> 外文期刊>AIAA Journal >Simulations of Nanosecond Pulse Plasmas in Supersonic Flows for Combustion Applications
【24h】

Simulations of Nanosecond Pulse Plasmas in Supersonic Flows for Combustion Applications

机译:用于燃烧应用的超音速流中纳秒脉冲等离子体的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Nanosecond pulse plasma discharges have demonstrated the ability to significantly reduce ignition delay time in the combustion of supersonic fuel-oxidizer mixtures. Although it is generally believed that such plasmas enhance combustion through fast production of radicals, there is still uncertainty over the detailed kinetics that take place during the pulse, as well as the importance of other mechanisms such as gas heating. In this work, we develop a computational model for study of nanosecond pulse discharges interacting with supersonic oxygen/hydrogen (O_2/H_2) flows and pure-argon flows. Both positive (anodic) and negative (cathodic) pulse polarities are investigated at voltages ranging from 4 to 8 kV. Results indicate that the plasma develops as filamentary streamers, with O radical densities of ~10~(21) m~(-3) (~0.5% by volume of the mixture) in addition to other important radicals such as H, OH, O(~1D), O_2(a_1A_g), and O_2(b_1∑ _g~+). Gas heating is most intense near the electrode edges, due to ion Joule heating densities of ~10~13 W/m~3, with a temperature increase of approximately hundreds of kelvins. Gas heating due to quenching of ion and metastable species also occurs within the bulk of the plasma, but is about an order of magnitude less than ion Joule heating. Although gas heating is observed within the bulk plasma for all O_2/H_2 pulses, heating only takes place at the electrode edges for the argon anodic pulse and no heating is observed in the argon cathodic pulse. Increasing voltages increases plasma volume, peak species densities, and peak gas temperatures. The anodic pulse streamers produce radicals over a greater volume and deeper into the flow than cathodic pulses, which suggests that anodic pulses are better suited to combustion applications.
机译:纳秒脉冲等离子体放电已证明能够显着减少超音速燃料-氧化剂混合物燃烧中的点火延迟时间。尽管通常认为这样的等离子体通过自由基的快速产生来增强燃烧,但是对于在脉冲过程中发生的详细动力学以及其他机制例如气体加热的重要性仍然存在不确定性。在这项工作中,我们开发了一个计算模型,用于研究纳秒脉冲放电与超音速氧/氢(O_2 / H_2)流和纯氩流的相互作用。在4到8 kV的电压范围内,研究了正(阳极)和负(阴极)脉冲极性。结果表明,等离子体以丝状流光的形式发展,除其他重要的自由基(例如H,OH,O)外,O自由基的密度为〜10〜(21)m〜(-3)(混合物体积的〜0.5%)。 (〜1D),O_2(a_1A_g)和O_2(b_1∑ _g〜+)。由于离子焦耳加热密度为〜10〜13 W / m〜3,气体加热在电极边缘附近最为强烈,并且温度升高了约数百开尔文。由于离子和亚稳态物质的猝灭而引起的气体加热也发生在等离子体的大部分内部,但是比离子焦耳加热小大约一个数量级。尽管对于所有O_2 / H_2脉冲,在体等离子体中都观察到气体加热,但是加热仅在氩阳极脉冲的电极边缘发生,而在氩阴极脉冲中未观察到加热。增大电压会增加等离子体体积,峰值物质密度和峰值气体温度。阳极脉冲流束比阴极脉冲在更大的体积上产生自由基,并且在气流中产生更深的自由基,这表明阳极脉冲更适合燃烧应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号