首页> 外文期刊>Aerospace science and technology >Enhanced trajectory linearization control based advanced guidance and control for hypersonic reentry vehicle with multiple disturbances
【24h】

Enhanced trajectory linearization control based advanced guidance and control for hypersonic reentry vehicle with multiple disturbances

机译:基于增强轨迹线性化控制的多扰动高超音速再入飞行器高级制导与控制

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the guidance and control problem for hypersonic reentry vehicle (HRV) in the presence of control constraints and multiple disturbances is handled based on unified enhanced trajectory linearization control (TLC) framework under reference-tracking methodology. First, based on the nominal trajectory and open-loop command generated by Gauss pseudo-spectral method (GPM), a time-varying feedback guidance law with integral action is synthesized to stabilize the tracking error dynamics along the nominal trajectory under the framework of TLC. Second, to improve the robustness of attitude and angular rate loop, variations of various aerodynamic coefficients and external disturbances are considered as lumped uncertainties, reduced-order linear extended state observers (LESO) with given model information are constructed to estimate the lumped uncertainties in each loop, respectively. In addition, comparisons between the estimation efficiency of LESO and reduced-order LESO are carried out. Then augmented with the disturbance estimates and TLC control law, tracking errors of the rotational dynamics can be actively rejected without sacrificing nominal performances. More importantly, fewer control consumption and smooth transient performances are achieved by using nonlinear tracking differentiator (TD) in attitude loop. The stability of the resulting closed-loop system is well established based on Lyapunov stability theory. Finally, the effectiveness of the proposed advanced guidance and control strategy is verified through extensive simulations on the six-degree-of-freedom reentry flight. (C) 2015 Elsevier Masson SAS. All rights reserved.
机译:本文在参考跟踪方法的基础上,采用统一的增强轨迹线性化控制(TLC)框架,对存在控制约束和多重干扰的高超声速再入飞行器的制导与控制问题进行了研究。首先,基于高斯伪谱方法(GPM)产生的标称轨迹和开环命令,合成了具有积分作用的时变反馈制导律,以在TLC框架下稳定沿着标称轨迹的跟踪误差动态。 。其次,为了提高姿态和角速度环的鲁棒性,将各种空气动力学系数的变化和外部干扰视为集总不确定性,构造具有给定模型信息的降阶线性扩展状态观测器(LESO)来估计每个模型中的集总不确定性。循环。另外,进行了LESO和降阶LESO的估计效率之间的比较。然后,通过增加扰动估计值和TLC控制律,可以在不牺牲额定性能的情况下主动拒绝旋转动力学的跟踪误差。更重要的是,通过在姿态回路中使用非线性跟踪微分器(TD),可以减少控制消耗并实现平稳的瞬态性能。基于Lyapunov稳定性理论,可以很好地建立最终闭环系统的稳定性。最后,通过对六自由度再入飞行的广泛模拟,验证了所提出的高级制导和控制策略的有效性。 (C)2015 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号