首页> 外文期刊>IEEE Aerospace and Electronic Systems Magazine >A study of spacecraft reaction thruster configurations for attitude control system
【24h】

A study of spacecraft reaction thruster configurations for attitude control system

机译:用于姿态控制系统的航天器反作用推进器配置的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Reaction thrusters (RTs) are used as an alternative to momentum exchange devices when disturbance torques exceed the control authority of momentum exchange devices. The reaction control system (RCS) can employ some rocket thrusters to provide attitude control during the thrusting or coast phase. Within the control loop, the RCS's target could be either achieving and keeping a certain attitude or controlling the rate of an attitude change. In the coast phase, some tasks such as preacceleration, settling of liquid propellant, damping of structural vibrations, providing a velocity increment to separate stages and payloads, and carrying out orbital and nonorbital maneuvers may be included in its functions. The propulsion perturbation torques, whose size is relatively large, are primarily produced because of the center of mass offset, which itself is produced as a result of static unbalance, transient gas flow phenomenon, and nozzle cant angle misalignments. Nozzle cant angle misalignments are produced because of manufacturing tolerances and pressurizations, which should be compensated by the attitude control system. In addition, rocket thruster plume impingement against surrounding structure or components produces sizable disturbance torques and cross-coupling effects that degrade the dynamic stability and increase the duty cycle that should be corrected by additional thrusters to restore vehicle attitude. During each maneuver, there are always undesirable angular rotations in consequence of some errors and uncertainties in the various components of a spacecraft. The attitude control system has to be capable of compensating these imperfect effects of the mechanical system.
机译:当干扰转矩超过动量交换装置的控制权限时,反作用力推力器(RTs)可以替代动量交换装置。反作用控制系统(RCS)可以使用一些火箭推进器在推进或滑行阶段提供姿态控制。在控制回路内,RCS的目标可能是达到并保持某种姿态,或者控制姿态变化的速度。在海岸阶段,其功能可能包括一些任务,例如预加速,液体推进剂的沉降,结构振动的阻尼,为各个阶段和有效载荷提供速度增量以及执行轨道和非轨道机动。较大尺寸的推进扰动扭矩主要是由于质心偏移而产生的,质心偏移本身是由于静态不平衡,瞬态气流现象和喷嘴倾斜角度未对准而产生的。由于制造公差和压力而产生喷嘴倾斜角未对准,应通过姿态控制系统进行补偿。此外,火箭推进器羽流撞击周围的结构或部件会产生相当大的干扰扭矩和交叉耦合效应,从而降低动态稳定性并增加占空比,应通过增加推进器来纠正这种现象,以恢复车辆的姿态。在每次操纵过程中,由于航天器各个组件中的某些误差和不确定性,总会有不希望有的角度旋转。姿态控制系统必须能够补偿机械系统的这些不完美的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号