首页> 外文期刊>Advances in Water Resources >Finite-volume flux reconstruction and semi-analytical particle tracking on triangular prisms for finite-element-type models of variably-saturated flow
【24h】

Finite-volume flux reconstruction and semi-analytical particle tracking on triangular prisms for finite-element-type models of variably-saturated flow

机译:有限元棱镜型有限棱镜型模型的有限体积通量重建与半分析粒子跟踪

获取原文
获取原文并翻译 | 示例
       

摘要

Consistent particle tracking relies on conforming velocity fields that ensure local mass conservation on elements. Cell-centered finite-volume and mixed finite-element methods result in conforming velocity fields but this is not the case for continuous Galerkin methods, such as the standard finite element method (FEM). Nonetheless stan-dard FEM is often used for subsurface flow modeling because it yields a continuous approximation of hydraulic heads, and it naturally handles unstructured grids and full material tensors. Acknowledging these advantages and the wide-spread use of finite-element-type simulations, we present a postprocessing method that reconstructs a cell-centered finite-volume solution from a finite-element-type solution of the variably-saturated subsurface flow equation to obtain conforming, mass-conservative fluxes. Using the linear average velocity field derived from these fluid fluxes, we employ element-wise analytical solutions for triangular prisms to compute particle trajecto-ries and associated travel times. As a result, we can compute consistent particle trajectories for variably-saturated flow solutions generated by node-centered methods, such as finite element or finite difference methods, that do not yield conforming velocity fields. Our flux reconstruction solves a linear elliptic problem whose size is on the order of the number of elements, which is computationally much faster than solving the initial, non-linear transient variably-saturated flow equation. Compared to other postprocessing schemes, our flux reconstruction is numerically stable, fast to compute, and does not induce severe numerical artifacts when applied to heteroge-neous domains with strongly varying velocities. However, these advantages come with a comparably high coding effort and the necessity of solving a global system of equations. We show that the results of our flux reconstruction are close to the node-centered primal solution for variably saturated three-dimensional flow with heterogeneous material properties.
机译:一致的粒子跟踪依赖于确保元件局部大规模保护的速度磁场。以细胞为中心的有限体积和混合有限元方法导致速度字段符合速度字段,但不需要连续的Galerkin方法,例如标准有限元方法(FEM)。尽管如此,斯坦-DARD有限元件通常用于地下流量建模,因为它产生了液压头的连续近似,并且自然地处理非结构化的网格和全材料张量。承认这些优点和有限元型模拟的广泛应用,我们提出了一种后处理方法,其从可变饱和的地下流动方程的有限元型溶液重建细胞中心的有限体积解决方案以获得符合,大规模保守的助熔剂。使用来自这些流体助熔剂的线性平均速度场,我们采用了用于三角形棱镜的元素 - 明智的分析解决方案,以计算粒子轨迹和相关的行进时间。结果,我们可以计算由节点中心的方法产生的可变饱和流溶液的一致粒子轨迹,例如有限元或有限差分方法,其不会产生符合速度场。我们的磁通重建解决了线性椭圆问题,其大小在计算数量的顺序上,其计算得比求解初始非线性瞬态可变饱和的流动方程的速度快得多。与其他后处理方案相比,我们的助焊剂重建是数值稳定的,快速计算,并且当施加到具有强速度的异质型域时,不会引起严重的数值伪影。然而,这些优点具有相对高的编码力,以及解决全球方程式系统的必要性。我们表明,我们的磁通重建的结果靠近节点饱和的原始解决方案,用于可变地饱和三维流动,具有异质材料性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号