首页> 外文期刊>Advances in Water Resources >Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane
【24h】

Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane

机译:丁烷利用微生物的生物强化在原位代谢1,1-二氯乙烯,1,1-二氯乙烷和1,1,1-三氯乙烷的实验室,现场和模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

A series of laboratory, field, and modeling studies were performed evaluating the potential for in situ aerobic cometabolism of chlorinated aliphatic hydrocarbon (CAH) mixtures, including 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) by bioaugmented microorganisms that grew on butane. A butane-grown bioaugmentation culture, primarily comprised of a Rhodococcus sp., was developed that effectively transformed mixtures of the three CAHs, under subsurface nutrient conditions. Microcosm experiments and modeling studies showed rapid transformation of 1,1-DCE with high transformation product toxicity and weak inhibition by butane, while 1,1,1-TCA was much more slowly transformed and strongly inhibited by butane. Field studies were conducted in the saturated zone at the Moffett Field In-Situ Test Facility in California. In the bioaugmented test leg, 1,1-DCE was most effectively transformed, followed by 1,1-DCA, and 1,1,1-TCA, consistent with the results from the laboratory studies. A 1-D reactive/transport code simulated the field responses during the early stages of testing (first 20 days), with the following extents of removal achieved at the first monitoring well; 1,1-DCE (~97%), 1,1-DCA (~77%), and 1,1,1-TCA (~36%), with little or no CAH transformation observed beyond the first monitoring well. As time proceeded, decreased performance was observed. The modeling analysis indicated that this loss of performance may have been associated with 1,1-DCE transformation toxicity combined with the limited addition of butane as a growth substrate with longer pulse cycles. When shorter pulse cycles were reinitiated after 40 days of operation, 1,1-DCE transformation was restored and the following transformation extents were achieved; 1,1-DCE (~94%), 1,1-DCA (~8%), and 1,1,1-TCA (~0%), with some CAH transformation occurring past the first monitoring well. Modeling analysis of this period indicated that the bioaugmented culture was likely not the dominant butane-utilizing microorganism present. This was consistent with observations in the indigenous leg during this period that showed effective butane utilization and the following extents of transformation: 1,1-DCE (~86 %), 1,1-DCA (~5%), and 1,1,1-TCA (~0%). The combination of lab and field scale studies and supporting modeling provide a means of evaluating the performance of bioaugmentation and the cometabolic treatment of CAH mixtures.
机译:进行了一系列的实验室,现场和模型研究,评估了包括1,1,1-三氯乙烷(1,1,1-TCA),1,1的氯代脂肪烃(CAH)混合物的原位有氧代谢的潜力-在丁烷上生长的生物强化微生物产生的-二氯乙烷(1,1-DCA)和1,1-二氯乙烯(1,1-DCE)。开发了丁烷生长的生物强化培养物,主要由红球菌属组成,可在地下营养条件下有效转化三种CAH的混合物。微观实验和模型研究表明,1,1-DCE的快速转化具有较高的转化产物毒性,但对丁烷的抑制作用较弱,而1,1,1-TCA的转化速度要慢得多,而丁烷的抑制作用要强得多。在加利福尼亚州莫菲特现场测试设施的饱和区进行了现场研究。在生物强化测试腿中,最有效地转化了1,1-DCE,其次是1,1-DCA和1,1,1-TCA,这与实验室研究的结果一致。一维反应/运输代码模拟了测试的早期阶段(前20天)中的现场响应,并且在第一个监控井处达到了以下清除程度; 1,1-DCE(〜97%),1,1-DCA(〜77%)和1,1,1-TCA(〜36%),在第一个监测井以外几乎没有观察到CAH转化。随着时间的流逝,观察到性能下降。建模分析表明,这种性能下降可能与1,1-DCE转化毒性以及有限添加丁烷作为具有较长脉冲周期的生长底物有关。当运行40天后重新启动较短的脉冲周期时,恢复了1,1-DCE转化并达到了以下转化程度; 1,1-DCE(〜94%),1,1-DCA(〜8%)和1,1,1-TCA(〜0%),并且某些CAH转化发生在第一口监测井之后。这一时期的模型分析表明,生物强化培养物可能不是主要的丁烷利用微生物。这与这段时期在土著人腿上的观察结果一致,该观察结果表明丁烷的有效利用和以下转化程度:1,1-DCE(〜86%),1,1-DCA(〜5%)和1,1 ,1-TCA(〜0%)。实验室和现场规模研究以及支持模型的结合提供了一种评估生物增强和CAH混合物的新陈代谢处理性能的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号