...
首页> 外文期刊>Advances in space research >Adaptive Gaussian Mixture based orbit determination with combined atmospheric density uncertainty consideration
【24h】

Adaptive Gaussian Mixture based orbit determination with combined atmospheric density uncertainty consideration

机译:基于自适应高斯混合的基于轨道测定,综合大气密度不确定性考虑

获取原文
获取原文并翻译 | 示例
           

摘要

Large initial uncertainties in the semi-major axis or force-model uncertainties, such as atmospheric density uncertainty are key drivers of the along-track uncertainty growth. Long propagation times may result in the need to use filtering algorithms for orbit determination that do not reside to the assumption of Gaussianity for state errors but estimate the entire probability density function. Adaptive Gaussian mixture based filters have shown promising results in the past. Previous research in the field of orbit determination using Gaussian mixture filters has restricted its attention to initial uncertainties in the semi-major axis direction. The present paper focuses on the consequences of including realistic, physics-based descriptions of atmospheric density uncertainty into the covariance propagation of the mixture kernels. It is shown that the neglect of process noise, as has been customary for many years, can lead to undesired characteristics of the probability density function (pdf) estimates and that the inclusion of atmospheric density uncertainty process noise, even in cases where it is not the dominant driver of along-track uncertainty growth, is able to correct these deficiencies. For low orbiting satellites with increased ballistic coefficients or small initial uncertainties in the semi-major axis direction, density uncertainty is the dominant driver of the along-track uncertainty increase. Due to its growth that evolves at least cubic in time, situations may arise which require the usage of Gaussian mixtures also for the process noise when working in Cartesian coordinates. The theoretical foundation for this case is elaborated and an algorithm capable of dynamically switching between a single Gaussian and a Gaussian mixture for the density uncertainty process noise is presented.
机译:半主轴或力模型不确定性的大型初始不确定性,例如大气密度不确定性是沿着轨道不确定性增长的关键驱动因素。长传播时间可能导致需要使用滤波算法来轨道确定,其不驻留在对状态误差的Gaussianity的假设中,但估计整个概率密度函数。基于自适应高斯混合的过滤器已经显示了过去的有希望的结果。以前使用高斯混合滤光器的轨道测定领域的研究已经限制了其对半主轴方向上的初始不确定性的关注。本文重点介绍了包括基于现实的物理的基于物理的物理学的常压性质的描述的后果,进入混合核的协方差繁殖中的大气密度不确定性。结果表明,忽视了处理噪声,如习惯多年来,可能导致概率密度函数(PDF)估计的不期望的特征,并且甚至在其中的情况下包括大气密度不确定过程噪声追踪不确定性增长的主要驱动因素能够纠正这些缺陷。对于具有增加的弹道系数或半主轴方向上的小初始不确定性的低轨道卫星,密度不确定度是沿着轨道的不确定性增加的主导驱动因素。由于其增长,即在时间上至少推动立方体,可能会出现情况,这需要在笛卡尔坐标工作时使用高斯混合物的使用情况。阐述了这种情况的理论基础,并且呈现了一种能够在单个高斯和高斯混合物之间动态切换的算法,用于密度不确定过程噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号