首页> 外文期刊>Advanced Materials >Hydrogel-Supported Optical-Microcavity Sensors
【24h】

Hydrogel-Supported Optical-Microcavity Sensors

机译:水凝胶支持的光学微腔传感器

获取原文
获取原文并翻译 | 示例
           

摘要

As the breadth of silicon-chip-based biomedical diagnostic (biosensors) and therapeutic (drug-delivery) technologies continues to expand, there exists a growing need to improve the biological-device interface for both in-vivo and ex-vivo applications. The biological-device interface sets operational constraints on the various mechanical, material, and preparatory aspects of how samples are collected, processed, and applied to a device, as well as on establishing requirements for device biocompatibility, tolerance towards biofouling, and the stability of immobilized bioreagents. Typically, silicon-chip-based devices (5-10 urn thick), including microfluidic microelectromechanical systems (MEMS) devices, are fabricated from and remain attached to the rigid bulk-silicon wafer support (~ 0.5-0.6 mm thick). This architecture may limit device function particularly for microfluidic porous structures, for which optimum function may depend on the directionality of flow through the device. Improving the biological-device interface could significantly advance the performance characteristics and versatility of chip-based devices while enabling new applications. For example, wound-care management could be advanced through the development of a "smart bandage", which is conceptualized as an optical device (2-10 urn thick) embedded in a flexible, therapeutic support matrix (e.g., polymeric gel). This architecture would improve the biological-device interface by enabling the "smart bandage" to be applied directly to a wound. A conformal contact could be made, thereby eliminating invasive sample collecting procedures. A support matrix could be selected to maintain the activity of bioreagents while enabling direct optical readout of the sensor response while contacting the wound. The sensor could be designed to change color, signaling the presence of types of bacteria, or if the wound required special care. Alternatively, the sensor could be used to monitor the release of biologically active substances concentrated within the porous matrix in a time-dependent fashion. Substances could be selected to support wound healing, including cytokines to promote immune function or growth factors to enhance cell proliferation, differentiation, and angiogenesis.'1'2'
机译:随着基于硅芯片的生物医学诊断(生物传感器)和治疗性(药物递送)技术的范围不断扩大,人们日益需要改进适用于体内和体外应用的生物设备界面。生物设备界面对样品的收集,处理和施加到设备的各种机械,材料和准备方面,以及建立设备生物相容性,对生物污染的耐受性和稳定性的要求设置了操作约束。固定化的生物试剂。通常,包括微流体微机电系统(MEMS)器件在内的基于硅芯片的器件(5-10微米厚)是由刚性块状硅晶片支撑件(约0.5-0.6毫米厚)制成并保持附着状态。这种结构可能会限制设备的功能,特别是对于微流体多孔结构,其最佳功能可能取决于通过设备的流动方向。改进生物设备接口可以显着提高基于芯片的设备的性能特征和多功能性,同时支持新的应用程序。例如,可以通过开发“智能绷带”来推进伤口护理管理,该“智能绷带”被概念化为嵌入在柔性的治疗性支撑基质(例如,聚合物凝胶)中的光学装置(2-10微米厚)。通过使“智能绷带”直接应用于伤口,该体系结构将改善生物设备的界面。可以进行保形接触,从而消除了侵入性样品收集程序。可以选择支持基质以维持生物试剂的活性,同时在接触伤口时能够直接光学读出传感器响应。传感器可以设计成改变颜色,表明存在细菌类型,或者如果伤口需要特殊护理。或者,该传感器可用于以时间依赖的方式监测在多孔基质内浓缩的生物活性物质的释放。可以选择支持伤口愈合的物质,包括促进免疫功能的细胞因子或增强细胞增殖,分化和血管生成的生长因子。'1'2'

著录项

  • 来源
    《Advanced Materials》 |2005年第18期|p. 2199-2203|共5页
  • 作者单位

    Department of Dermatology and the Center for Future Health, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;

    Department of Electrical & Computer Engineering and, the Center for Future Health, University of Rochester, 514 Computer Studies Building, PO Box 270231, Rochester, NY 14627, USA;

    Department of Dermatology and the Center for Future Health, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;

    Department of Dermatology and the Center for Future Health, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号