...
首页> 外文期刊>Advanced Materials >Nanometer-Scale Uniform Conductance Switching in Molecular Memristors
【24h】

Nanometer-Scale Uniform Conductance Switching in Molecular Memristors

机译:纳米尺度均匀的分子记忆均匀切换

获取原文
获取原文并翻译 | 示例
           

摘要

One common challenge highlighted in almost every review article on organic resistive memory is the lack of areal switching uniformity. This, in fact, is a puzzle because a molecular switching mechanism should ideally be isotropic and produce homogeneous current switching free from electroforming. Such a demonstration, however, remains elusive to date. The reports attempting to characterize a nanoscopic picture of switching in molecular films show random current spikes, just opposite to the expectation. Here, this longstanding conundrum is resolved by demonstrating 100% spatially homogeneous current switching (driven by molecular redox) in memristors based on Ru-complexes of azo-aromatic ligands. Through a concurrent nanoscopic spatial mapping using conductive atomic force microscopy and in operando tip-enhanced Raman spectroscopy (both with resolution 7 nm), it is shown that molecular switching in the films is uniform from hundreds of micrometers down to the nanoscale and that conductance value exactly correlates with spectroscopically determined molecular redox states. This provides a deterministic molecular route to obtain spatially homogeneous, forming-free switching that can conceivably overcome the chronic problems of robustness, consistency, reproducibility, and scalability in organic memristors.
机译:几乎每篇关于有机电阻记忆的审查文章中突出的一个共同挑战是缺乏区域开关均匀性。事实上,这是难题,因为分子切换机构应该理想地是各向同性的并且产生自由电流的均匀电流。然而,这种示范迄今为止仍然难以捉摸。试图表征分子膜切换的纳米镜像的报告显示随机电流尖峰,与期望相反。这里,基于偶氮芳族配体的Ru络合物,通过在忆叠的Ru络合物中展示忆叠中的100%空间均匀的电流切换(由分子氧化还原驱动)来解决这种长期难题。通过使用导电原子力显微镜和Outmando Tip-Enhanced拉曼光谱(含有分辨率<7nm)的并发纳米镜的空间映射,示出了薄膜中的分子切换是从数百微米到纳米级的均匀性,并且导电值与光谱确定的分子氧化还原态完全相同。这提供了确定性的分子途径,以获得空间均匀的无成形切换,可以想到可以想到的鲁棒性,一致性,再现性和有机回忆体中可扩展性的慢性问题。

著录项

  • 来源
    《Advanced Materials》 |2020年第42期|2004370.1-2004370.11|共11页
  • 作者单位

    Natl Univ Singapore NUSNNI NanoCore Singapore 117411 Singapore|Natl Univ Singapore NUS Grad Sch Integrat Sci & Engn NGS Singapore 117456 Singapore|Natl Univ Singapore Dept Phys Singapore 117542 Singapore;

    Univ Kalyani Dept Phys Kalyani 741235 W Bengal India;

    HORIBA FRANCE SAS HORIBA Sci F-91120 Palaiseau France;

    HORIBA FRANCE SAS HORIBA Sci F-91120 Palaiseau France;

    HORIBA FRANCE SAS HORIBA Sci F-91120 Palaiseau France|Indian Assoc Cultivat Sci Sch Chem Sci Kolkata 700032 W Bengal India;

    Natl Univ Singapore Dept Elect & Comp Engn Singapore 117583 Singapore;

    Natl Univ Singapore NUSNNI NanoCore Singapore 117411 Singapore|Natl Univ Singapore NUS Grad Sch Integrat Sci & Engn NGS Singapore 117456 Singapore|Natl Univ Singapore Dept Phys Singapore 117542 Singapore;

    Texas A&M Univ Dept Elect & Comp Engn College Stn TX 77843 USA;

    Indian Assoc Cultivat Sci Sch Chem Sci Kolkata 700032 W Bengal India;

    Natl Univ Singapore NUSNNI NanoCore Singapore 117411 Singapore|Natl Univ Singapore NUS Grad Sch Integrat Sci & Engn NGS Singapore 117456 Singapore|Natl Univ Singapore Dept Phys Singapore 117542 Singapore|Natl Univ Singapore Dept Elect & Comp Engn Singapore 117583 Singapore|Natl Univ Singapore Mat Sci & Engn Dept Singapore 117575 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    conductive atomic force microscopy; memristor; tip enhanced Raman spectroscopy; transition metal complex; uniformity;

    机译:导电原子力显微镜;椎管;尖端增强拉曼光谱;过渡金属复合物;均匀性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号