首页> 外文期刊>Advanced energy materials >Simultaneous Improvement in Efficiency and Stability of Low-Temperature-Processed Perovskite Solar Cells by Interfacial Control
【24h】

Simultaneous Improvement in Efficiency and Stability of Low-Temperature-Processed Perovskite Solar Cells by Interfacial Control

机译:通过界面控制同时提高低温加工钙钛矿太阳能电池的效率和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

In most current state-of-the-art perovskite solar cells (PSCs), high-temperature (approximate to 500 degrees C)-sintered metal oxides are employed as electron-transporting layers (ETLs). To lower the device processing temperature, the development of low-temperature-processable ETL materials (such as solution-processed ZnO) has received growing attention. However, thus far, the use of solutionprocessed ZnO is limited because the reverse decomposition reaction that occurs at ZnO/perovskite interfaces significantly degrades the charge collection and stability of PSCs. In this work, the reverse decomposition reaction is successfully retarded by sulfur passivation of solution-processed ZnO. The sulfur passivation of ZnO by a simple chemical means, efficiently reduces the oxygen-deficient defects and surface oxygen-containing groups, thus effectively preventing reverse decomposition reactions during and after formation of the perovskite active layers. Using the low-temperature-processed sulfurpassivated ZnO (ZnO-S), perovskite layers with higher crystallinity and larger grain size are obtained, while the charge extraction at the ZnO/perovskite interface is significantly improved. As a result, the ZnO-S-based PSCs achieve substantially improved power-conversion-efficiency (PCE) (19.65%) and long-term air-storage stability (90% retention after 40 d) compared with pristine ZnO-based PSCs (16.51% and 1% retention after 40 d). Notably, the PCE achieved is the highest recorded (19.65%) for low-temperature ZnObased PSCs.
机译:在大多数最新的钙钛矿太阳能电池(PSC)中,将高温(约500摄氏度)烧结的金属氧化物用作电子传输层(ETL)。为了降低器件处理温度,可低温处理的ETL材料(例如溶液处理的ZnO)的开发受到越来越多的关注。然而,到目前为止,由于在ZnO /钙钛矿界面发生的逆分解反应显着降低了PSC的电荷收集和稳定性,因此溶液加工的ZnO的使用受到了限制。在这项工作中,通过溶液处理的ZnO的硫钝化成功地阻止了逆分解反应。通过简单的化学方法对ZnO进行硫钝化,可以有效地减少缺氧缺陷和表面含氧基团,从而有效地防止钙钛矿活性层形成期间和之后的逆分解反应。使用低温处理的硫钝化ZnO(ZnO-S),可以获得具有较高结晶度和较大晶粒尺寸的钙钛矿层,同时显着改善了ZnO /钙钛矿界面的电荷提取。结果,与原始的基于ZnO的PSC相比,基于ZnO-S的PSC达到了显着提高的功率转换效率(PCE)(19.65%)和长期的空气存储稳定性(在40 d后90%的保留)。 40 d后保留率为16.51%和1%。值得注意的是,所获得的PCE是低温ZnO基PSC的最高记录(19.65%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号