首页> 外文期刊>Advanced energy materials >Graphene-Tailored Thermodynamics and Kinetics to Fabricate Metal Borohydride Nanoparticles with High Purity and Enhanced Reversibility
【24h】

Graphene-Tailored Thermodynamics and Kinetics to Fabricate Metal Borohydride Nanoparticles with High Purity and Enhanced Reversibility

机译:石墨烯修饰的热力学和动力学制备具有高纯度和增强的可逆性的金属硼氢化物纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their ultrahigh theoretical capacity, metal borohydrides are considered to be one of the most promising candidate hydrogen storage materials. Their application still suffers, however, from high operating temperature, sluggish kinetics, and poor reversibility. Designing nanostructures is an effective way of addressing these issues, but seeking suitable approaches remains a big challenge. Here, a space-confined solid-gas reaction to synthesize Mg(BH4)(2) nanoparticles supported on grapheme is reported, which serves as the structural support for the dispersed Mg(BH4)(2) nanoparticles. More notably, density functional theory calculations reveal that graphene could weaken both the MgH bonds of MgH2 and BB bonds of B2H6, which could thermodynamically and kinetically facilitate the chemical transformation to synthesize Mg(BH4)(2) with high purity. Because of the synergistic effects of both the significant reduction in particle size and the catalytic effect of graphene, an onset dehydrogenation temperature of approximate to 154 degrees C is observed for Mg(BH4)(2) nanoparticles, and a complete dehydrogenation could be achieved at a temperature as low as 225 degrees C, with the formation of MgB2 as the by-product. This work provides a new perspective to tailoring the thermodynamics and kinetics of chemical reactions toward the favorable synthesis of functional inorganic materials.
机译:由于其极高的理论容量,金属硼氢化物被认为是最有前途的候选储氢材料之一。然而,它们的应用仍然受到操作温度高,动力学迟缓和可逆性差的困扰。设计纳米结构是解决这些问题的有效方法,但是寻求合适的方法仍然是一个巨大的挑战。在这里,报道了空间受限的固溶反应,以合成支撑在石墨烯上的Mg(BH4)(2)纳米颗粒,该反应为分散的Mg(BH4)(2)纳米颗粒提供了结构支撑。更值得注意的是,密度泛函理论计算表明,石墨烯既可以减弱MgH2的MgH键,又可以减弱B2H6的BB键,从而可以在热力学和动力学上促进化学转化,从而以高纯度合成Mg(BH4)(2)。由于显着减小粒径和石墨烯的催化作用的协同作用,Mg(BH4)(2)纳米粒子的起始脱氢温度大约为154摄氏度,并且可以在200℃实现完全脱氢。温度低至225摄氏度,并形成MgB2作为副产物。这项工作为调整化学反应的热力学和动力学方向以实现功能性无机材料的良好合成提供了新的视角。

著录项

  • 来源
    《Advanced energy materials》 |2018年第13期|1702975.1-1702975.9|共9页
  • 作者单位

    Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China;

    Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2522, Australia;

    Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Hunan, Peoples R China;

    Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China;

    Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2522, Australia;

    Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    borohydrides; graphene; hydrogen storage; kinetics; magnesium hydride;

    机译:硼氢化物;石墨烯;储氢;动力学;氢化镁;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号