首页> 外文期刊>Advanced energy materials >Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbl_3)_(0.88)(CsPbBr_3)_(0.12)/CuSCN Interface
【24h】

Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbl_3)_(0.88)(CsPbBr_3)_(0.12)/CuSCN Interface

机译:通过在(FAPbl_3)_(0.88)(CsPbBr_3)_(0.12)/ CuSCN界面上原位形成2D钙钛矿同时改善光伏性能和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

To solve the stability issues of perovskite solar cells (PSC), here a novel interface engineering strategy that a versatile ultrathin 2D perovskite (5-AVA)(2)PbI4 (5-AVA = 5-ammoniumvaleric acid) passivation layer that is in situ incorporated at the interface between (FAPbI(3))(0.88)(CsPbBr3)(0.12) and the hole transporting CuSCN is reported. Surface analysis using X-ray photoelectron spectroscopy confirms the formation of 2D perovskite. Hysteresis is reduced by the interfacial 2D layer, which could be ascribed to improvement of interfacial charge extraction efficiency, associated with suppression of recombination. Moreover, introduction of the interface passivating layer enhances the moisture stability and photostability as compared to the control perovskite film due to hydrophobic nature of 2D perovskite. The unencapsulated device retains 98% of the initial power conversion efficiency (PCE) after 63 d under moisture exposure of about 10% in the dark. A PCE of the control device is boosted from 13.72 to 16.75% as a consequence of enhanced opencircuit voltage (Voc) and fill factor along with slightly increased short-circuit current density (Jsc), which results from reduced trap states of (FAPbI(3))(0.88)(CsPbBr3)(0.12) as evidenced by enhanced carrier lifetimes and charge extraction. The perovskite/hole transport material interface engineering gives insight into simultaneous improvements of PCE and device stability.
机译:为了解决钙钛矿太阳能电池(PSC)的稳定性问题,这里提出了一种新颖的界面工程策略,即在原位使用一种通用的超薄2D钙钛矿(5-AVA)(2)PbI4(5-AVA = 5-铵戊酸)钝化层报道了在(FAPbI(3))(0.88)(CsPbBr3)(0.12)与空穴传输CuSCN之间的界面处引入的CuSCN。使用X射线光电子能谱的表面分析证实了2D钙钛矿的形成。界面2D层减少了磁滞现象,这可以归因于界面电荷提取效率的提高,以及重组的抑制。此外,由于2D钙钛矿的疏水性,与对照钙钛矿膜相比,界面钝化层的引入增强了水分稳定性和光稳定性。在黑暗中暴露于约10%的湿气下63 d后,未封装的器件保留98%的初始功率转换效率(PCE)。由于增强的开路电压(Voc)和填充系数以及短路电流密度(Jsc)略有增加,控制设备的PCE从13.72%提高到16.75%,这是由于(FAPbI(3 ))(0.88)(CsPbBr3)(0.12),如延长的载流子寿命和电荷提取所证明。钙钛矿/空穴传输材料界面工程使您可以同时改善PCE和设备稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号