首页> 外文期刊>Advanced energy materials >Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All-Polymer Solar Cells
【24h】

Photoactive Blend Morphology Engineering through Systematically Tuning Aggregation in All-Polymer Solar Cells

机译:通过系统地调节聚合在全聚合物太阳能电池中的光活性混合物形态工程。

获取原文
获取原文并翻译 | 示例
           

摘要

Polymer aggregation plays a critical role in the miscibility of materials and the performance of all-polymer solar cells (APSCs). However, many aspects of how polymer texturing and aggregation affect photoactive blend film microstructure and photovoltaic performance are poorly understood. Here the effects of aggregation in donor-acceptor blends are studied, in which the number-average molecular weights (Mns) of both an amorphous donor polymer, poly[4,8-bis (5-(2-ethylhexyl)thiophen-2-yl) benzo[1,2-b; 4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)2-carboxylate-2-6-diyl)] (PBDTT-FTTE) and a semicrystalline acceptor polymer, poly{[N, N'-bis (2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2)) are systematically varied. The photovoltaic performance is correlated with active layer microstructural and optoelectronic data acquired by in-depth transmission electron microscopy, grazing incidence wide-angle X-ray scattering, thermal analysis, and optical spectroscopic measurements. Coarse-grained modeling provides insight into the effects of polymer aggregation on the blend morphology. Notably, the computed average distance between the donor and the acceptor polymers correlates well with solar cell photovoltaic metrics such as short-circuit current density (J(sc)) and represents a useful index for understanding/predicting active layer blend material intermixing trends. Importantly, these results demonstrate that for polymers with different texturing tendencies (amorphous/semicrystalline), the key for optimal APSC performance, photovoltaic blend morphology can be controlled via both donor and acceptor polymer aggregation.
机译:聚合物聚集体在材料的混溶性和全聚合物太阳能电池(APSC)的性能中起着至关重要的作用。但是,关于聚合物纹理化和聚集如何影响光敏共混膜微结构和光伏性能的许多方面,人们对此知之甚少。在这里研究了供体-受体共混物中聚集的影响,其中两种无定形供体聚合物聚[4,8-双(5-(2-乙基己基)噻吩-2- yl)苯并[1,2-b; 4,5-b']二噻吩-2,6-二基-alt-(4-(2-乙基己基)-3-氟噻吩并[3,4-b]噻吩-)2-羧酸酯-2-6-二基]] (PBDTT-FTTE)和半结晶受体聚合物,聚{[N,N'-双(2-辛基十二烷基)萘-1,4,5,8-双(二​​甲叉酰亚胺)-2,6二基] -alt-5,5 '-(2,2'-联噻吩)}(P(NDI2OD-T2))系统地变化。光电性能与通过深度透射电子显微镜,掠入射广角X射线散射,热分析和光谱测量获得的活性层微观结构和光电数据相关。粗粒度建模可深入了解聚合物聚集对共混物形态的影响。值得注意的是,计算的供体和受体聚合物之间的平均距离与太阳能电池光伏度量标准(例如短路电流密度(J(sc)))具有很好的相关性,并且代表了了解/预测活性层共混材料混合趋势的有用指标。重要的是,这些结果表明,对于具有不同纹理化趋势(非晶/半结晶)的聚合物,APSC性能最佳的关键,可以通过施主和受主聚合物的聚集来控制光伏共混物的形态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号