首页> 外文期刊>American Chemical Society >From Short Conjugated Oligomers to Conjugated Polymers. Lessons from Studies on Long Conjugated Oligomers
【24h】

From Short Conjugated Oligomers to Conjugated Polymers. Lessons from Studies on Long Conjugated Oligomers

机译:从短的共轭低聚物到共轭聚合物。长共轭低聚物研究的经验教训

获取原文
获取原文并翻译 | 示例
           

摘要

Given their utility in a variety of electronic devices, conjugated oligomers and polymers have attracted considerable research interest in recent years. Because polymeric materials consist of very large molecules with a range of molecular weights (that is, they are polydisperse), predicting their electronic properties is a complicated task. Accordingly, their properties are typically estimated by extrapolation of oligomeric properties to infinite chain lengths. In this Account, we discuss the convergence behavior of various electronic properties of conjugated oligomers, often using thiophene oligomers as a representative example. We have observed some general trends in our studies, which we briefly summarize below for five properties. Most of the calculated values are method dependent: the absolute values can be strongly dependent on the computational level used. Band Gap. The generally accepted approximation used to estimate polymer band gap, whereby a plot of HOMO−LUMO gap versus 1 (where n is the number of monomer units) is extrapolated to infinite n, fails for long oligomers, because convergence behavior is observed for band gaps. At the B3LYP/6-31G(d) level, it is possible to extrapolate oligomer HOMO−LUMO gaps with a second-order polynomial equation. Alternatively, PBC/B3LYP/6-31G(d) is a very good method to reliably predict the band gap of conjugated polymers. Reorganization Energy. Values of the internal reorganization energy (λ) do not scale linearly with 1, instead exhibiting an inverse correlation with the square-root of the number of monomer units for n = 2−12. For larger n (10−50), a linear relationship is observed between reorganization energy and the reciprocal chain length, and the extrapolation approaches λ ≈ 0 for infinite numbers of oligomer rings. Ionization Potential. The relationship between the first adiabatic ionization potential IP1a of oligothiophenes and oligoselenophenes and chain length linearly correlates with an empirically obtained value of 1/(n0.75). The first vertical ionization potential (IP1v) linearly correlates with a similarly empirically obtained value of 1/(n0.70). Polaron−Bipolaron Balance. The contribution of a polaron pair to the electronic structure of the short oligothiophene dication is small; for medium-length oligothiophene chains, the contribution from the polaron pair state begins to become significant. For longer (above 20-mer) oligothiophenes, the polaron pair state dominates. A similar picture was observed for multications as well as doped oligomers and polymers. The qualitative polaron−bipolaron picture does not change when a dopant is introduced; however, quantitatively, the bipolaron−polaron pair equilibrium shifts toward the bipolaron state. Disproportionation Energy. The stability of a single oligothiophene dication versus two cation radical oligothiophene molecules increases with increasing chain length, and there is an excellent correlation between the relative disproportionation energy and the inverse of chain length. A similar trend is observed in the disproportionation energies of oligothiophene polycations as well as doped oligomer and polymers. We also examine doped oligothiophenes (with explicitly included counterions) and polymers with a repeating polar unit. From our experience, it is clear that different properties converge in different ways, and long oligomers (having about 50 double bonds in the backbone) must often be used to correctly extrapolate polymer properties.
机译:考虑到它们在各种电子设备中的实用性,近年来共轭低聚物和聚合物引起了相当大的研究兴趣。由于聚合材料由分子量范围很大的大分子组成(也就是说,它们是多分散的),因此预测其电子性能是一项复杂的任务。因此,通常通过将低聚物性质外推至无限链长来估计其性质。在这个报告中,我们讨论了通常以噻吩低聚物为代表的共轭低聚物的各种电子性质的收敛行为。我们在研究中观察到了一些总体趋势,下面对五个特性进行简要总结。大多数计算值与方法有关:绝对值可能在很大程度上取决于所使用的计算级别。带隙。用于估计聚合物带隙的普遍接受的近似方法,即将HOMO-LUMO间隙对1 / n(其中n是单体单元的数量)的图外推到无限n,对于长的低聚物来说是失败的,因为观察到带隙。在B3LYP / 6-31G(d)级别,可以用二阶多项式方程外推低聚物HOMO-LUMO间隙。另外,PBC / B3LYP / 6-31G(d)是可靠预测共轭聚合物带隙的很好方法。重组能源。内部重组能量(λ)的值与1 / n线性不成比例,而是与n = 2-12时单体单元数的平方根呈反比关系。对于较大的n(10-50),观察到重组能与反向链长度之间存在线性关系,并且对于无限数量的低聚物环,外推法接近λ≈0。电离势。寡噻吩和寡硒代苯酚的第一绝热电离电势IP 1a 与链长之间的关系与经验值1 /(n 0.75 )线性相关。第一垂直电离电势(IP 1v )与类似的经验值1 /(n 0.70 )线性相关。极化子-双极化子平衡。极化子对对短寡聚噻吩指示的电子结构的贡献很小;对于中等长度的寡噻吩链,极化子对状态的贡献开始变得重要。对于更长的(20聚体以上)寡聚噻吩,极化子对状态占主导。对于多阳离子以及掺杂的低聚物和聚合物,观察到相似的图像。当引入掺杂剂时,定性极化子-双极化子图像不变。但是,从数量上讲,双极化子-极化子对的平衡向双极化子状态转移。歧化能。单个寡聚噻吩制剂相对于两个阳离子自由基寡聚噻吩分子的稳定性随链长的增加而增加,并且相对歧化能与链长的倒数之间存在极好的相关性。在低聚噻吩聚阳离子以及掺杂的低聚物和聚合物的歧化能中观察到类似的趋势。我们还检查了掺杂的低聚噻吩(具有明确包括的抗衡离子)和具有重复极性单元的聚合物。根据我们的经验,很明显,不同的性质以不同的方式收敛,并且必须经常使用长的低聚物(在主链中具有约50个双键)正确地推断聚合物的性质。

著录项

  • 来源
    《American Chemical Society》 |2011年第1期|p.14-24|共11页
  • 作者

  • 作者单位

    Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号