首页> 外文期刊>琉球大学農学部学術報告 >琉球石灰岩域における降雨流出とドリーネの浸透排水に関する研究
【24h】

琉球石灰岩域における降雨流出とドリーネの浸透排水に関する研究

机译:琉球石灰岩地区降雨径流与排沙入渗研究

获取原文
获取原文并翻译 | 示例
           

摘要

琉球石灰岩域では,河川が未発達な地域が多く,流域の多くは,すり鉢状の地形をなしているため,降雨はドリーネの浸透孔から,地下に排水される事例が多い.このような地域では,台風等の豪雨の度に,ドリーネの浸透能力の機能低下が原因で,周辺農地は深刻な湛水被害に見舞われ,農業経営上,大きな問題を引き起こしている.%River systems are often primitive in "Ryukyu" coral limestone soil regions. Therefore, water is drained through underground infiltration from a doline. A lower infiltration capability coupled with typhoon and heavy rain often triggers flood damages, which jeopardizes agricultural crop production in these areas. Therefore, it is urgent to evaluate the effect of various measures on flood damage mitigation these areas and implement the effective measure. In order to evaluate the effectiveness of these measures, we need to clarify the relationship between rainfall-discharge and infiltration drainage through a doline in these regions. However, previous studies used a simple model assuming only penetration apertures at the bottom of infiltration ponds and were not able to sufficiently capture the roles of side apertures and limestone pipes for drainage which are characteristics to be seen in these areas. The objective of this study is to clarify and improve our understanding of the relationship between rainfall-discharge and infiltration drainage through a doline in these regions considering the complex drainage system in these areas. We considered rainfall-discharge and infiltration drainage as a series of phenomena within a model. First, we estimated the inflow to a doline based on the amount of discharge. Then, we evaluated the residues by computing the differences between the inflow to a doline and infiltration drainage through a doline. Finally, we developed a mathematical simulation model and simulates an input-output relationship of these drainage systems. In order to reflect this complex systems in the model, we varied the size of side apertures depending on the water level of a seepage basin, modeled the relationship between the cross sectional area of side apertures and the water level, and incorporated this mechanism into our simulation model. We applied this simulation model to two areas, 1) "Ashi-chaga" area where a tunnel drainage system has been introduced for mitigating flood damages, 2)"Makabe" area where several measures have been discussed for mitigating flood damages. Our simulation model was able to closely approximate the observed water level changes by explicitly modeling the effect of side apertures in "Ashi-chaga" area. Our simulation results indicate that the peak discharge for the December's rainfall event (the maximum rainfall per hour: 54.0mm, the total rainfall: 187.0mm) was 8.51m~3/sec. We applied parameters estimated for this December's rainfall event to the heavy rain event of September, 1999 (the maximum rainfall per 24 hours: 477.0mm, the total rainfall: 555.0mm) and simulated changes in water levels. This simulation closely projected the peak water level of the heavy rain event (simulated water level was 6.8m, while the observed water level was 6.7m). Furthermore, this simulation results indicate that the peak discharge of this event was 25.91m~3/sec. In this region, the tunnel had been constructed as a drainage measure. However, we have not experienced the heavy rain event like September, 1999 and the effectiveness of this tunnel has not been tested yet. So, we used our simulation model to examine the effect of the tunnel drainage on the degree and extent of flood damages. Our simulation model suggests that the tunnel contribute to the reduction of the maximum flood area by 65% and 82% of the total discharge. In "Makabe" area, we simulated infiltration of our study site by modeling two adjacent infiltration ponds with different infiltration capabilities, overflow among these two adjacent ponds through a subterranean drain system, and pipe flow drainage system. Our simulation model was able to closely approximate the observed water level changes by modeling this complex multiple drainage ponds system. We used the rain event data of August, 2007(rainfall per day: 457mm, the maximum rainfall per hour: 83.5mm), which caused the flood damage over 20 ha, and simulated the changes in water level. Our simulation results show that the peak water level was at the evaluation of 26.3m, and flooding occurred on the section of approximately 110m of prefectural road. Although, the rainoff-discharge relationship at each pond has not been quantified, our simulation results indicate that the peak discharge and the cumulative discharge at the 1st pond were 28.4m~3/sec and 445,029m~3 respectively, while the peak discharge and the cumulative discharge at the 8th pond were 6.2m~3/sec and 113,706m~3 respectively. Furthermore, we identified the characteristics of the limestone-cave which has been observed at the downstream direction of the 1st pond thorough our simulation analysis. Our simulation model closely projected changes in water levels when the base height of this pipe is set at the elevation of 18.5m (the base height of this pond is EL=16.5m), the diameter of this pipe is set at 80cm and the roughness coefficient (n) of 0.1is used. Our simulation results indicate that this modeling approach is useful for evaluating proposed measures for mitigating flood damages in these regions. These results will help us improve our understanding of the complex relationship between rainfall-discharge and infiltration drainage through a doline on and will provide scientific knowledge for evaluating flood damage mitigation measures in these areas.
机译:在琉球石灰岩地区的许多地区,河流不发达,而且大多数流域都具有类似砂浆的地形,因此降雨通常通过悬垂物的渗水孔排入地下。在台风等暴雨的情况下,由于排水入渗能力的功能恶化,周围的农田遭受了严重的洪灾破坏,这是农业管理中的主要问题。%河流系统通常是原始的在“琉球”珊瑚石灰岩土壤区域。在那里,水通过地下漏斗从地下漏水中排出。为了评估各种措施对减轻这些地区的洪灾危害的影响并实施有效措施。为了评估这些措施的有效性,我们需要弄清这些地区的降雨排放与通过杜林线渗入排水之间的关系。 ,以前的研究使用了一个简单的模型,假设只有渗透池底部的渗透孔,而不能充分捕捉到侧孔和石灰石管道的作用。这项研究的目的是,考虑到这些地区的复杂排水系统,我们将阐明并加深我们对通过这些区域的杜林漏水与入渗排水之间关系的理解。我们的排水是这些地区的特色。在模型中将降雨-排放和入渗排水视为一系列现象。首先,我们根据排放量估算入do水线的入水量,然后通过计算入to水线和入水量之间的差异来评估残留量。最后,我们开发了一个数学模拟模型并模拟了这些排水系统的输入-输出关系。为了在模型中反映这个复杂的系统,我们根据排水系统的水位来改变侧孔的大小渗水盆地,模拟侧孔的横截面积与水位之间的关系,并纳入该机制我们将该模拟模型应用于两个区域:1)“ Ashi-chaga”区域,该区域引入了隧道排水系统以减轻洪水的破坏,2)“ Makabe”区域,其中讨论了几种缓解措施我们的仿真模型能够通过对Ashi-chaga地区的侧孔效应进行显式建模,从而近似逼近观测到的水位变化。我们的仿真结果表明,12月降雨事件的峰值流量(每小时:54.0mm,总降雨量:187.0mm)为8.51m〜3 / sec。我们将针对12月的降雨事件估计的参数应用于1999年9月的大雨事件(每24小时的最大降雨量:477.0mm,总降雨量:555.0mm),并模拟了水​​位变化。该模拟紧密地预测了暴雨事件的峰值水位(模拟水位为6.8m,而观测水位为6.7m)。模拟结果表明,该事件的峰值流量为25.91m〜3 / sec,该地区已将隧道作为排水措施,但我们没有经历过1999年9月这样的大雨事件及其有效性。因此,我们使用模拟模型来研究隧道排水对洪水破坏程度和程度的影响。模拟模型表明,隧道有助于减少最大洪水面积。分别占总排放量的65%和82%。在“ Makabe”地区,我们通过对两个相邻的具有不同渗透能力的渗透池进行建模,通过地下排水系统在这两个相邻的池中进行溢流以及对管道进行排水,来模拟研究场地的渗透我们的模拟模型能够通过对该复杂的多排水池系统进行建模来近似逼近观测到的水位变化。我们使用了2007年8月的降雨事件数据(rai每天n降雨量:457mm,每小时最大降雨量:83.5mm),造成了超过20公顷的洪水灾害,并模拟了水​​位的变化。我们的模拟结果表明,峰值水位为26.3m,尽管在县道约110m的路段发生了洪水。尽管尚未量化每个池塘的雨水排放量关系,我们的模拟结果表明,第一个池塘的峰值流量和累积流量为28.4m〜3 /第8个池塘的峰值流量和累积流量分别为6.2m〜3 / sec和445,029m〜3和113,706m〜3,而累积流量分别为6.2m〜3 / sec和113,706m〜3。,我们通过模拟分析确定了在第一个池塘下游方向观察到的石灰岩洞穴特征。我们的仿真模型将管道的底部高度设置为海拔18.5m(池塘的底部高度为EL = 16.5m),管道的直径设置为80cm和粗糙度时,紧密预测水位的变化系数(n)为0.1。我们的模拟结果表明,这种建模方法可用于评估缓解这些地区洪水灾害的拟议措施。这些结果将帮助我们通过一条线来提高对降雨-流量与入渗排水之间复杂关系的理解,并将为评估这些地区的防洪减灾措施提供科学知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号