...
首页> 外文期刊>AAPG Bulletin >Laboratory deformation of granular quartz sand: Implications for the burial of clastic rocks
【24h】

Laboratory deformation of granular quartz sand: Implications for the burial of clastic rocks

机译:粒状石英砂的实验室变形:对碎屑岩埋藏的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We explore the influence of mechanical deformation in natural sands through experiments on water-saturated samples of quartz sand. Stresses, volumetric strain, and microseismicity (or acoustic emission, AE) rates were monitored throughout each test. Deformation of quartz sand at low stresses is accommodated by granular flow without significant grain breakage, whereas at high stresses, granulation and cataclastic flow are dominant. Sands deformed under isotropic conditions show compactive strains with an inverse power-law dependence of macroscopic crushing strength on mean grain size. Triaxial compression at high effective pressures produces compactive strain and a high AE rate associated with considerable particle-size reduction. Triaxial compression at low effective pressure produces dilatant granular flow accommodated by grain boundary frictional sliding and particle rotation. On the basis of experiment results, we predict the evolution of porosity and macroscopic yield strength as a function of depth for extensional and contractional basins. Sand strength increases linearly with depth for shallow burial, whereas for deep burial, strength decreases nonlinearly with depth. At subyield stresses, porosity evolves as a function of applied mean stress and is independent of distortional stress. Our predictions are in qualitative agreement with observations of microfracture density obtained from laboratory creep-compaction experiments and with natural sandstones of the Gulf of Mexico basin. Mechanical deformation contributes as much as a 30% increase to fluid pressure evolution, which has particular application to sedimentary systems that display zones of fluid overpressure. Furthermore, deformational strains cannot be fully recovered during uplift, erosion, and unloading of a sedimentary basin.
机译:通过对石英 砂的水饱和样品进行实验,我们探索了天然 砂中机械变形的影响。在每个测试过程中,均会监控应力,体积应变和微震(或声发射,AE)速率。低应力下石英砂的形变 由颗粒流 调节而没有明显的晶粒破裂,而在高应力下, 的粒化和碎裂流占主导地位。在各向同性条件下变形的 砂土表现出压实应变,其宏观抗压强度与 晶粒尺寸成反比。在 的高有效压力下产生三轴压缩会产生压实应变和较高的AE率,从而使 的粒径减小。在 低有效压力下的三轴压缩产生了由晶界摩擦滑动和颗粒旋转调节的 膨胀的粒状流。 根据实验结果,我们进行了预测伸展和收缩盆地的孔隙度和宏观屈服强度的演变 与深度 的关系。对于浅埋葬,砂强度 随深度呈线性增加,而对于深埋葬 ,强度随深度呈非线性下降。在子屈服应力下,孔隙率随施加的平均应力变化而变化,并且与变形应力无关。我们的预测与从实验室蠕变压实实验获得的微裂缝密度与墨西哥湾盆地的天然砂岩的定性吻合 。机械 变形对流体压力 演变的贡献高达30%,这特别适用于显示流体超压区域的沉积系统 。此外,变形 应变在沉积盆地的抬升,侵蚀和 卸载期间无法完全恢复。

著录项

  • 来源
    《AAPG Bulletin》 |2005年第5期|00000603-00000625|共23页
  • 作者单位

    Center for Tectonophysics, Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843present address: Idaho National Laboratory, P.O. Box 1625, Mailstop 2107, Idaho Falls, Idaho 83415-2107karnsl@inel.gov;

    Center for Tectonophysics, Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843chesterj@geo.tamu.edu;

    Center for Tectonophysics, Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843chesterf@geo.tamu.edu;

    Center for Tectonophysics, Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843a-kronenberg@tamu.edu;

    Center for Tectonophysics, Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843hajash@geo.tamu.edu;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号